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Intro to Next Generation Sequencing

e Individual genomes can be sequenced inexpensively

e 3 major parts
o Raw Genomic Sequence Data(FASTA/FASTQ)

o Sequence Alignments(SAM/BAM)
o Genomic Variant Calls(VCF/BCF)

e Finding and analyzing patterns in data crucial to better

understanding diseases and drugs
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Gene Regulation and ChIP Seq

. ChIP-seq Process
e Various factors control RNA T e

transcription

o Regulation of gene expression e ———

e Transcription Factor Binding —
Sites(TFBS) meeie -
o Represented by sequence motifs o —

e Chromatin T e e el

II
f
ﬂ

Immunoprecipitation + NGS > W%
ChIP-Seq e

o Peak analysis to determine
binding location



Binding Motifs

e Short sequences which represent

binding sites Example TF Binding Motifs
o ~10 base pairsin length

e Determined using ChIP Seq } ATAA
o ENCODE and JASPAR databases ' —=== : ===
o Slow and expensive process

o No way to find common patterns
between TFBS A =

e Not 100% specific } CTIATC&.._.;_:

o Difficult to model effects of variants
on TF binding




Existing Work

e DeepMotif(Lanchantin et al.)
o Convolutional Neural Network
to classify TFBS DeepMotif Network Architecture
o Individual network for each TF ‘ :
o Visualization techniques to
predict new motifs

e Shietal.

o Random forest classifier
predicts effects of SNPson TF
binding




Motif Representation

e (Consensus sequence
o “ldeal” representation

e Position Weight Matrix(PWM)

o Measures effect of each base on binding
energy

o Easy search of novel sites with high
predicted affinity

® Sequence Logo
o Bases scaled by information content
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Intro to Motif Identification

e Data Preparation and Preprocessing
o Integrate variants into reference genomic sequence
o Remove all ambiguous bases
o Segment sequence data into sections of length 100,000
e MM Motif Identification Algorithm
o E-value: expected # of similar motifs found in a sequence of

similar length
o P-value: probability that a random sequence would have a

stronger motif score than the sequence of interest



Motif Identification Cont.

e 100 sequence segments analyzed
e Highest scoring motifin each segment recorded

Motif Width(bp)

42
41
48

Relative Avg. E-value Avg. P-value
Frequency

0.51 1.8* 10 2.5*101°
0.15 5.5*1013 1.0 * 10
0.12 5.6*10% 2.1*10%



Sample Identified Motif Logos
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Motif Enrichment in ChIP Seq Data

Analyze ChIP seq peak data for the TF of interest
Looks for “best” site for motif in each sequence
Statistic of measurement is E-value

Using pre-determined set of motifs from identification
step leads to better results



TFBS Classification Algorithm Outline

Deep learning model
o Convolutional neural network(CNN)

Predicts effects of all variants on binding affinity at TFBS
Training Data: ChIP seq peak calls(ENCODE)

o Based on enrichment results

Binary classification of TFBS

Evaluation Metric: A P(TFBS) =P__(TFBS) - P_(TFBS)



Network Architecture and Evaluation

One-hot encoding to form images
from sequence data FC + Softmax Layers

Layer structure(Lanchantin et al.)
o Convolutional layer(4 x 2 feature

—> P(y=0| x)

map) ——> Py=1]x)
o RelU Layer Py=2 1
o Max pooling layer(2 x 1) @

o Fully connected layer

. . Input Softmax
Flnal Max pOOllng layer + SOftmaX (Features Il)  classifier
layer

o Qutputs TFBS probabilities



Future Work

e Testing and evaluation of convolutional network

e Development of generalized network for all TFBS
o Currently individual networks required for each one
o Visualization could help in understanding network

e Testing network with especially compressible data

o Potential association between effective compression and
sequence motifs/TFBS



Conclusions

e Understanding patterns in sequence motifs is essential
to furthering our knowledge of gene regulation

e Motif identification and enrichment can provide valuable
insight into patterns found in sequence motifs

e Deep learning provides a simple and effective paradigm
for predicting the effects of variants on TF binding
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