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Research Problem

Problem

What is the asymptotic behaviour of the expected value of the
second gonality of an Erdős-Rényi Random Graph G (n, p)?
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Motivation and Context

Chip-Firing Game

Divisors on graphs was inspired by a ”chip-firing game” where
values at each vertex are thought of as a pile of chips. Chips
would be moved from pile to pile by the rules of chip-firing.

Winning the Game

A vertex with a negative number of chips in its pile is
considered to be”in debt”. A divisor is winning iff it is
equivalent to a divisor with no vertices in debt.
k-th gonality is the minimum number of chips necessary on the
graph to ensure that an ”opponent” cannot make the divisor a
losing divisor by taking away any k chips from the divisor.
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Preliminaries

Definition

For 0 < p < 1, an Erdős-Rényi Random Graph G (n, p) is a
simple graph with n vertices and an edge between any two
distinct vertices with probability p.

Example: 3 Vertices

(1− p)3 3p(1− p)2 3p2(1− p) p3
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Preliminaries, cont.

Definition

A divisor D on a graph G is a formal Z-linear combination of
the vertices of G,

D =
∑

v∈V (G)

D(v)v .

Example

v1

v2

v3

v4

1

−2

0

1

D = v1 − 2v2 + v4
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Preliminaries, cont.

Definition

Degree of a divisor D is the sum of the coefficients at each
vertex,

deg(D) =
∑

v∈V (G)

D(v).

Example

1

−2

0

1

Degree of this divisor is 0.
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Preliminaries, cont.

Definition

A specific vertex is ”fired” (in a process called ”chip-firing”)
by transferring exactly one value along each connected edge to
each directly adjacent vertex.
Note that degree is invariant under chip-firing.

Example

1

−2

0

1

→ 1

−1

1

−1
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Preliminaries, cont.

Definition

Two divisors on a graph are said to be equivalent if one can be
obtained from the other through a series of chip-firing moves.

Example

1

−2

0

1

→ 1

−1

1

−1

→ 0

0

1

−1

Any of these three divisors are pairwise equivalent.
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Preliminaries, cont.

Definition

A divisor D is said to be effective if there are a non-negative
number of chips on all vertices of its associated graph, or

v ∈ V (G ) =⇒ D(v) ≥ 0.

Example

1

−2

0

1

This divisor is not effective because one of its
nodes has a negative coefficient.
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Preliminaries, cont.

Definition

A divisor D has rank r if r is the largest integer such that for
every effective divisor E with degree r , D − E is equivalent to
an effective divisor. Note that if a divisor D has degree less
than 0 it is defined to have a rank of −1. Also, note that a
divisor D must have degree greater than or equal to its rank.

Example

This divisor has rank 1.

0

0 1

Andy Xu and Wendy Wu Mentor: Guangyi Yue — Second Gonality of Erdős-Rényi Random Graphs 10/23



Preliminaries, cont.

The rank is at most 1 because rank is at most degree. The
rank is at least 1 as for each effective divisor E of degree 1
satisfies D − E is equivalent to an effective divisor. Thus, the
rank is 1. Every possible D − E will be shown to be equivalent
to an effective divisor on the following slides.

0

0 1
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Preliminaries, cont.

Effective divisor E :

0

0 1

D − E :

0

0 0
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Preliminaries, cont.

Effective divisor E :

0

1 0

D − E :

0

-1 1 →

-2

0 2 →

0

0 0
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Preliminaries, cont.

Effective divisor E :

1

0 0

D − E :

-1

0 1 →

0

0 0
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Preliminaries, cont.

Definition

Given a fixed graph G , the k-th gonality of G is the minimum
degree for a divisor on G to have rank k .

Example

The first gonality of this graph is 1.
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First Gonality

Theorem (Deveau et al.)

Let p(n) = c(n)
n

, and suppose that c(n)� n is unbounded.
Then

E(gonG (n, p)) ∼ n.
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Results

Computations

Let Fn(p) = E(gon2 G (n, p))/n, then we have the following
results:

F1(p) =2

F2(p) =2− p

F3(p) =2− 2p + p3

F4(p) =2− 3p + 3p3 + 2.25p4 − 4.5p5 + 1.25p6

F5(p) =2− 4p + 6p3 + 9p4 − 10.8p5 − 37p6 + 58p7 − 6p8

− 30p9 + 13.8p10
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Graph of Probability vs. Second Gonality

Figure: F1 F2 F3 F4 F5
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An Explicit Bound on the Second Gonality

Theorem

The second gonality of an Erdős-Rényi Random Graph is
bounded above by

E(gon 2G (n, p)) ≤ n(1 + e−c(n)).

Corollary

E(gon 2G (n, p))

n
∼ 1.

for c(n)→∞.
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Proof

Proof.

Call a vertex isolated if it has no neighbor. Consider the
divisor D with two chips on each isolated vertex and one chip
on all other vertex. Any divisor E with two chips on different
vertices trivially satisfies D − E effective, whereas if both chips
of E are on a vertex v , then firing all other vertices in divisor
D − E leaves an effective result.
Thus, the expected gonality is bounded above by n + k where
k is the expected number of isolated vertices. The probability
any given vertex is isolated is (1− p)n−1 and thus the
expected number of isolated vertices is
k = n(1− p)n−1 = n(1− c(n)

n
)n−1, approaching ne−c(n) as n

tends to infinity. Hence our upper bound is n(1 + e−c(n)).
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Future Research

Look for a conclusive bound to show that

E(g2(G (n, p))) ∼ n.

.

Try to find another approach to bounding the second
gonality that can generalize to higher cases.
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