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Figure: Geometric meaning (R = 1
k )
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Definition

Given a smooth curve (x(s), y(s)), we define the unit tangential
vector at every point as:

~t =
1√

x ′2(s) + y ′2(s)
〈x ′(s), y ′(s)〉

We define the unit normal vector at every point as:

~n =
~t ′

|~t ′|

The curvature k such that:

k~n = ~t ′
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Differential equation

Define the motion of a curve such that every point x moves
according to the following differential equation:

dx

dt
= −k(x)~n(x)

Figure: A curve with dx
dt vectors drawn in
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Ecker-Huisken Result

All smooth curves that are a graph of some function will converge
to a straight line, if initially the graphs aren’t too ”weird”.

Gage-Hamilton-Grayson Result

All smooth, closed curves will flow to a point under curve
shortening flow, and become more and more circular.

Figure: A curve undergoing curve shortening flow
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Curvature

Curvature k(x) at point x is π − α, where α is the interior angle at
x.

Normal vectors

The normal vector ~n(x) at point x is in the direction of the angle
bisector at x.

Figure: A smooth curve and a discrete analogue
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Figure: A shape undergoing discrete curve shortening flow
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Isosceles Triangles

Top angle < π
3 : flows to a line (Ramanujam)

Top angle > π
3 : flows to a point (Rowley and Cohen)

Figure: Isosceles triangle
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Figure: Phase plane diagram for isosceles triangles
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General Triangles

All triangles except the isosceles specified before go to lines
(Rowley and Cohen)

Figure: General triangle and phase plane diagram for general triangles
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Figure: Phase plane diagram for general triangles
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Discrete Generalization

Does Ecker and Huisken’s result hold for discrete open curves
Specifically graphs
Even if we were to consider just a linear approximation of the
flow, it would be incredibly complex, infinite system

Figure: A section of an infinite piecewise linear curve
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Useful Restriction

General infinite curves are very hard, so we can restrict
conditions to allow for easier analysis.

Had the idea of periodic curves with points that remain fixed
between the repeating periods

These curves we found would be of the type ...C CT C CT ...

CT : Construct fixed points every n s.t. θan−m = θan+m for
m < n

Figure: Section of an infinite piecewise linear curve of this type
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Description

By showing a result for finite curves, we can then show one for
infinite curves

Finite piecewise linear curve

A collection of points x0, x1, ..., xn defining a discrete curve, with
x0 and xn being fixed under DCSF

x0

x1

x2

x3

x4

x5

x6

Figure: Example of a finite piecewise linear curve
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Equations

The velocity of each point x0, x1, ..., xn under, using the
equation dx

dt = −k(x)~n(x) is

dxi
dt = cos−1

(
(xi−1−xi)·(xi+1−xi)
|xi−1−xi||xi+1−xi|

)(
(xi−1−xi)|xi+1−xi|+(xi+1−xi)||xi−1−xi|
|((xi−1−xi)|xi+1−xi|+(xi+1−xi)||xi−1−xi|)|

)

This isn’t very helpful...



The Discrete Curve Shortening Flow

Open Curves

Finite Curves

Equations

The velocity of each point x0, x1, ..., xn under, using the
equation dx

dt = −k(x)~n(x) is

dxi
dt = cos−1

(
(xi−1−xi)·(xi+1−xi)
|xi−1−xi||xi+1−xi|

)(
(xi−1−xi)|xi+1−xi|+(xi+1−xi)||xi−1−xi|
|((xi−1−xi)|xi+1−xi|+(xi+1−xi)||xi−1−xi|)|

)
This isn’t very helpful...



The Discrete Curve Shortening Flow
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Geometry

Instead of analyzing the equations, we analyze the geometry

More specifically, the movement of the maximum and
minimum points

Clear to see the maximum will always decrease and minimum
increase (unless one is one of the endpoints)

With this, we can determine the end behavior!



The Discrete Curve Shortening Flow

Open Curves

Finite Curves

Geometry

Instead of analyzing the equations, we analyze the geometry

More specifically, the movement of the maximum and
minimum points

Clear to see the maximum will always decrease and minimum
increase (unless one is one of the endpoints)

With this, we can determine the end behavior!



The Discrete Curve Shortening Flow

Open Curves

Finite Curves

Geometry

Instead of analyzing the equations, we analyze the geometry

More specifically, the movement of the maximum and
minimum points

Clear to see the maximum will always decrease and minimum
increase (unless one is one of the endpoints)

With this, we can determine the end behavior!



The Discrete Curve Shortening Flow

Open Curves

Finite Curves

Geometry

Instead of analyzing the equations, we analyze the geometry

More specifically, the movement of the maximum and
minimum points

Clear to see the maximum will always decrease and minimum
increase (unless one is one of the endpoints)

With this, we can determine the end behavior!



The Discrete Curve Shortening Flow

Open Curves

Finite Curves

End Behavior

With this behavior of a constantly decreasing maximum and
increasing minimum, we showed that all these curves result in a
line!

Meaning then that infinite curves of the type ...C CT C CT ... also
go to lines
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An Animation

Figure: Evolution of a finite piecewise linear curve
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Discrete Generalization

Is there an analogue to the Gauge-Hamilton-Grayson Result?

Will all polygons collapse to a point under the DCSF?

Will polygons become more and more convex under the
DCSF?

Will all polygons become convex before collapsing under the
DCSF?
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Convex Polygons

Convexity

Theorem

Under the DCSF, every convex polygon will remain convex until it
collapses.

Figure: A sketch of the proof
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Convexity
cont

However, a polygon will not necessarily become more convex:

Figure: An equiangular hexagon under the DCSF
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Symmetric Concave Quadrilateral

Simplest concave polygon

Theorem

Every symmetric concave quadrilateral will become convex before
collapsing under the DCSF.

A B

C

D

Figure: A symmetric concave quadrilateral
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Exploit Symmetry

C and D will evolve symmetrically, only consider one of them

Define ∠CAB = α, ∠CBA = β, and AB = x

A B

C

Figure: Three points whose evolution we will consider, normal vectors
drawn in
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The Evolution

The Differential Equations

Three differential equations dictate the evolution of the points:

dx

dt
= 2α + 2β − 2π

dα

dt
= −

((α + β) cos(α+β
2 )− (−2α + π) sin(α)) csc(β) sin(α + β)

x

dβ

dt
= −

((α + β) cos(α+β
2 )− (−2β + π) sin(β)) csc(α) sin(α + β)

x

Different initial conditions will lead to different results
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Figure: α = 2π
3 and β = π

6 and x = 2
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Figure: α = 191π
200 and β = π

40
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Figure: A shape undergoing discrete curve shortening flow
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Boundary Cases

Want to show that α becomes less than π
2 before β = 0 (Case

1) or x = 0 (Case 2)
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Case 1: Phase Plane Portrait

Figure: α vs β
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Figure: α vs β
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Case 2: A similar approach

Similar reasoning

Use PPP of α vs x

Algebraic manipulation yields proof
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Generalization

The Differential Equations

Three differential equations dictate the evolution of the points:

dx

dt
= 2α + 2β − 2π

dα

dt
= −

((α + β) cos(α+β
2 )− (−2α + π) sin(α)) sin(α + β)

x sinβ

dβ

dt
= −

((α + β) cos(α+β
2 )− (−2β + π) sin(β)) sin(α + β)

x sinα

What features of the equations make the result true?
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Next Steps

Does the geometry dictate the singular behavior of the
derivatives when the figure is about to collapse?

Will analogous dependencies hold for all quadrilaterals,
implying that every quadrilateral will become convex?
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