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Diophantine Equations

Definition (Diophantine Equations)

Diophantine Equations are polynomials of two or more variables with
solutions restricted to Z or Q.

For two variables, D.E. define plane curves

So rational solutions correspond to points with rational coordinates

Ex. Fermat’s theorem: xn + yn = 1, n > 2, x , y ∈ Q equivalent to
xn + yn = zn, x , y , z ,∈ Z
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The Rational Points on Fermat Curves

Two examples of Diophantine equations with rational solutions marked:
x4 + y4 = 1 and x5 + y5 = 1.
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Diophantine Equations

Definition (Diophantine Equations)

Diophantine Equations are polynomials of two or more variables with
solutions restricted to Z or Q.

For two variables, D.E. define plane curves

So rational solutions correspond to points with rational coordinates

Ex. Fermat’s theorem: xn + yn = 1, n > 2, x , y ∈ Q equivalent to
xn + yn = zn, x , y , z ,∈ Z
Question: finite or infinite number of rational points?

Question: given some known rational points on a curve, can we
generate more?

Mordell’s Theorem: finite number of rational points generate all
rational points for a class of cubic curves (elliptic curves)

Aurash Vatan, Andrew Yao (MIT PRIMES) Elliptic Curves and Mordell’s Theorem December 16, 2017



Diophantine Equations

Definition (Diophantine Equations)

Diophantine Equations are polynomials of two or more variables with
solutions restricted to Z or Q.

For two variables, D.E. define plane curves

So rational solutions correspond to points with rational coordinates

Ex. Fermat’s theorem: xn + yn = 1, n > 2, x , y ∈ Q equivalent to
xn + yn = zn, x , y , z ,∈ Z
Question: finite or infinite number of rational points?

Question: given some known rational points on a curve, can we
generate more?

Mordell’s Theorem: finite number of rational points generate all
rational points for a class of cubic curves (elliptic curves)

Aurash Vatan, Andrew Yao (MIT PRIMES) Elliptic Curves and Mordell’s Theorem December 16, 2017



Diophantine Equations

Definition (Diophantine Equations)

Diophantine Equations are polynomials of two or more variables with
solutions restricted to Z or Q.

For two variables, D.E. define plane curves

So rational solutions correspond to points with rational coordinates

Ex. Fermat’s theorem: xn + yn = 1, n > 2, x , y ∈ Q equivalent to
xn + yn = zn, x , y , z ,∈ Z
Question: finite or infinite number of rational points?

Question: given some known rational points on a curve, can we
generate more?

Mordell’s Theorem: finite number of rational points generate all
rational points for a class of cubic curves (elliptic curves)

Aurash Vatan, Andrew Yao (MIT PRIMES) Elliptic Curves and Mordell’s Theorem December 16, 2017



Rational Points on Conics

Definition

General Rational Conic: Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,
A,B,C ,D,E ,F ∈ Q.

Theorem

Take a general conic with rational
coefficients and a rational point O.
A point P on the conic is rational if
and only if the line through P and O
has rational slope.

Theorem gives geometric
method for generating rational
points

Method can be described
algebraically
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An Application: Generating Pythagorean Triples

Examples

Take the unit circle with O = (−1, 0). The line through O with rational

slope t intersects the circle again at
(
1−t2

1+t2
, 2t
1+t2

)
.

Theorem (Generation of Pythagorean Triples)

(a, b, c) is an in integer solution to x2 + y2 = z2 if and only if
(a, b, c) = (n2 −m2, 2mn, n2 + m2) for n,m ∈ Z.

Pythagorean triples correspond to rational points on x2 + y2 = 1

We already have a
c = 1−t2

1+t2
and b

c = 2t
1+t2

Plugging in t = m
n ,

a

c
=

n2 −m2

n2 + m2
,

b

c
=

2mn

n2 + m2

We see that this implies c = n2 + m2 and the rest follows
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Rational Points on y 2 = x3 + c

Moving to cubics, our method for conics fails

Given one rational point on a cubic curve, can we get more?

Bachet studied rational solutions to C : y2 = x3 + c for c ∈ Z
Discovered formula in (1621!) that takes one rational point on C and
returns another
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Bachet’s Formula

Theorem (Bachet’s Formula)

Bachet’s formula says that for a cubic C : y2 = x3 + c with c ∈ Z, if

(x1, y1) is a rational solution of C , then so is
(
x4−8cx
4y2 , −x6−20cx3+8c2

8y3

)
.

There is a geometric procedure equivalent to applying Bachet: find the
second intersection of the tangent at (x1, y1) and C .
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Bachet’s Formula

Take the example C : y2 = x3 + 3. One rational point by inspection is
(1, 2). Applying Bachet’s formula yields

(1, 2)(
−23

16 ,−
11
64

)(
2540833
7744 ,−4050085583

681472

)
And so on... This formula almost always generates infinitely many
rational points.

Can often find one solution by inspection, so being able to generate
infinitely many is a huge improvement.
But Bachet does not generate all solutions.
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But! Bachet is Not Enough

y2 = x3 − 26 has two “easy” rational roots: (3, 1) and (35, 207). Applying
Bachet to each repeatedly:

(3, 1)→
(
705
4 , 187198

)
→
(
247043235585
5606415376 , −122770338185379457

419785957693376

)
→ . . .

(35, 207)→
(
167545
19044 ,

−67257971
2628072

)
→(

1028695651552397952865
344592394091494400016 ,

4970551157449683117229613279377
6396737528620859270011033599936

)
→ . . .

The line through (3, 1) (blue) and (35, 207) (green) intersects C at(
881
256 ,

15735
4096

)
(orange).
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But it can be generated from (3, 1) and (35, 207)

We need a method for generating new rational points from 2 inputs
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Group Law

Definition (The Group Law on Rational
Points in C )

Let distinct A,B ∈ C have coordinates in Q.
Define A + B as the reflection over the
x − axis of the third intersection point,
A ∗ B, of line AB with C . If A = B, we
define A + B as the reflection of the second
intersection point of the tangent line to C at
A with C .

The Identity

We define the identity as O. If A and B
share a x-coordinate, we say AB intersects
C “at infinity” at O.
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Rational Elliptic Curves

We can generalize Bachet’s formula to more general cubics, namely
rational elliptic curves.

Definition (Rational Elliptic Curves)

We define rational elliptic curves as non-singular algebraic plane curves
described by polynomials of the form y2 = x3 + ax2 + bx + c , a, b, c ∈ Q,
plus a “point at infinity” O.

Definition

The group of rational points on an elliptic curve C is denoted by C (Q).
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Examples

Below are the graphs of two elliptic curves in R2: y2 = x3 + x2 + 1 and
y2 = x3 − 2x2 + 1.
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Non-Examples

These curves are singular and therefore are not elliptic curves: y2 = x3

and y2 = x3 + x2. Notice that all have either a cusp, or self-intersection
(node).
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Finite Generation

We are interested in the generation of C (Q).

Definition

A group G is finitely generated if there exists a finite set
{g1, g2, ..., gn} ⊂ G such that for all a ∈ G there exist {a1...an} ⊂ Z such
that a =

∑n
i=0 giai .
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Mordell’s Theorem

Theorem (Mordell’s Theorem)

Let C be a non-singular cubic curve given by an equation

C : y2 = x3 + ax2 + bx ,

with a, b ∈ Z. Then C (Q), the group of rational points on C, is a finitely
generated abelian group.

Restricted to elliptic curves with a root at (0, 0).

This means there exists a finite set of points so that all rational
points can be obtained by inductively applying the group law.
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Proof of Mordell’s Theorem:

Consider the subgroup 2C (Q) of C (Q). Then take representatives
A1,A2, ... of its cosets.

For any P, there are some points P1 and Ai such that

P = 2P1 + Ai .

Repeat this process for P1 to find a P2, and then a P3, and so forth.

P = 2P1 + Ai1

P1 = 2P2 + Ai2

P2 = 2P3 + Ai3

P3 = 2P4 + Ai4

Repeating m times and back-substituting,

P = Ai1 + 2Ai2 + 4Ai3 + ... + 2m−1Aim + 2mPm
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Proof of Mordell’s Theorem:

Lemma

∃ finite S independent of P such that for large enough m, Pm ∈ S.

Take the Elliptic Curve y2 = x3 − 2. Pick starting point

P =

(
30732610574763

160280942564521
,

4559771683571581358275

2029190552145716973931

)

P =

(
2340922881

58675600
,

113259286337279

449455096000

)
+ (3, 5)

= 2

(
129

100
,
−383

1000

)
+ (3, 5)

(
129

100
,
−383

1000

)
= 2(3, 5) + 0
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Proof of Mordell’s Theorem:

Lemma

∃ finite S independent of P such that for large enough m, Pm ∈ S.

Now,

P =

(
30732610574763

160280942564521
,

4559771683571581358275

2029190552145716973931

)
P1 =

(
129

100
,
−383

1000

)
P2 = (3, 5).

Notice numerators and denominators decrease as m increases

∃K ∈ Z dependent only on C such that for sufficiently large m,
numerator and denominator of x-coordinate of Pm less than K

S is the set of P ∈ C (Q) with x-coordinate’s with numerator and
denominator less than K
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S is the set of P ∈ C (Q) with x-coordinate’s with numerator and
denominator less than K
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Proof of Mordell’s Theorem:
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Proof of Mordell’s Theorem:

Lemma

The number of cosets of 2C (Q) in C (Q) is finite.

Equivalent to the index (C (Q) : 2C (Q)) being finite.

This result is known as Weak Mordell’s Theorem
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Proof of Mordell’s Theorem:

Lemma

The number of cosets of 2C (Q) in C (Q) is finite.

Equivalent to the index (C (Q) : 2C (Q)) being finite.

This result is known as Weak Mordell’s Theorem

Note that

P = Ai1 + 2Ai2 + 4Ai3 + ... + 2m−1Aim + 2mPm.

Lemma 1 tells us there is a finite set S of Pm.

Lemma 2 tells us that there is a finite set of Ai .

Thus, generating set G = S ∪ {A1,A2, ...} is finite.
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Generalizations

Mordell’s theorem holds for all rational elliptic curves, not only those
with a root at (0, 0).

Mordell made a conjecture about higher degree curves that was
proved in 1983 by Falting.

Theorem

Falting’s Theorem] A curve of genus greater than 1 has only finitely many
rational points.

Definition (Genus)

The genus g of a non-singular curve can be defined in terms of its degree
d as (d−1)(d−2)

2 .

Notice that elliptic curves therefore have genus 1.
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