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Abstract. Bufetov and Gorin introduced the idea of applying differential operators
which are diagonalized by the Schur functions to Schur generating functions, a general-
ization of probability generating functions to particle systems. This technology allowed
the authors to access asymptotics of a variety of particle systems. We use this technique
to analyze uniformly distributed Gelfand-Tsetlin patterns where the top row is fixed. In
particular, we obtain limiting moments for the difference of empirical measure for two
adjacent rows in uniformly random Gelfand-Tsetlin patterns.

1. Introduction

Consider the following setup. Let T be a triangular array of nonnegative integers
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Such an array is called a Gelfand-Tsetlin (GT) pattern. If (λ
(M)
1 , . . . , λ

(M)
M ) = λ, we say

that T has top row λ; denote the set of all T with top row λ by T (M)
λ . This article is

concerned with understanding uniform distributions on T (M)
λ as M →∞, under suitable

limit conditions for λ. We note that the uniform distributions on T (M)
λ can be interpreted

as the uniform distribution of lozenge tilings of certain domains, see [No].

Although there are many methods in studying uniform distributions on T (M)
λ , such

as via correlation kernels [Pe] or log-partition functions [No], we follow the approach of

considering the moments: For each k and T ∈ T (M)
λ define the random variable

m
(N)
k (T ) =

1

M

N∑
i=1

(
λ
(N)
i +N − i

M

)k

.

In [BuG1] and [BuG2], it was shown that if λ = λ(M) forms a regular sequence (see
Definition 2.6) and N/M → η ∈ (0, 1) as M →∞, then the random moments for uniform

T ∈ T (M)
λ converge

m
(N)
k (T )→ mk(η)(1)

1
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almost surely where mk(η) ∈ R as M →∞ for each k = 0, 1, 2, . . ..
The main goal of this article is to describe the asymptotics of the finite difference of

moments between adjacent levels in the array for regular sequences λ. Mathematically
speaking, we study the M →∞ limit of

d
(N)
k (T ) = m

(N)
k (T )−m

(N−1)
k (T ).

Our main result can be stated as follows. If λ is regular and N/M → η ∈ (0, 1) as

M →∞, then for uniform T ∈ T (M)
λ

d
(N)
k (T )→ dk(η) ∈ R(2)

almost surely as M →∞ and we provide an explicit formula for dk(η) for each k = 1, 2, . . .
(see Theorem 3.2 for a precise statement). Along the way, we also give a proof of (1) which
is similar to that of [BuG1] but with methods optimized for our purposes (see Theorem
3.1 for a precise statement).

This problem is motivated by a discretization of a similar problem in random matrix
theory. We briefly describe this problem, then explain its significance. Suppose XM is an
M ×M Hermitian random matrix with entries in C such that its distribution is invariant
under conjugation by unitary matrices. Let X ′M denote an (M − 1)× (M − 1) principal
submatrix of XM . Suppose

λ1 ≥ . . . ≥ λM and µ1 ≥ . . . ≥ µM−1

are the eigenvalues of XM and X ′M respectively. The analogous statement to (1) is the
convergence

1

M

M∑
i=1

λki → mk k = 0, 1, 2 . . .(3)

and the analog to (2) is the convergence

1

M

M∑
i=1

λki −
1

M

M−1∑
i=1

µki → dk k = 1, 2 . . . ,(4)

both under suitable limit conditions on XM . The first limit has been studied ubiquitously
in random matrix theory. In fact, the study of random matrix theory may be argued
to have begun by the consideration of this limit by Wigner for certain Gaussian matri-
ces [AGZ]. The second limit has been considered more recently, and has been studied
for several random matrix ensembles including the Jacobi ensembles [GZ] and Hermite
ensembles ([Bu], [ErSc], [GA]).

One motivation for considering the limit (4) is that it is considering a discrete derivative
of (3) along the direction of matrix dimension.

However, there is another perhaps deeper connection between (4) and (3). This con-
nection can be understood by the Markov-Krein correspondence which we now state.

Theorem 1.1 (Markov-Krein Correspondence). For every probability measure µ on R
with compact support, absolutely continuous density with respect to the Lebesgue measure,
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and density bounded by 1, there exists a probability measure ν[µ] with compact support on
R such that

∞∑
n=0

mnz
n = exp

(
∞∑
n=1

dn
n
zn

)
(5)

where mn =
∫
xnµ(dx) and dn =

∫
xnν(dx).

It was shown in [Bu] that for the Gaussian unitary ensemble, the limits mk, dk in (3)
and (4) satisfy (5) as M →∞. Although unavailable in the literature, it is a folk theorem
that (5) continues to hold true for XM belonging to more general classes of distribution.
This suggests an explicit procedure for constructing such a measure ν[µ].

Returning to the discrete problems (1) and (2), our main motivation was to find a
discrete analogue of the Markov-Krein correspondence. Such a correspondence has not
been studied in the literature, as far as the authors are aware.

Our method relies on analyzing the Schur generating function (SGF), a certain general-

ization of the characteristic function, for uniform distributions on T (M)
λ . More specifically,

we use a family of difference operators, which are diagonalized by the Schur symmetric

functions, to access the moments of the measures m
(N)
k (T ) and d

(N)
k (T ). For uniform

distributions on T (M)
λ , the SGF has a simple description in terms of Schur symmetric

functions. We utilize this special form for the SGF and access the limits (1) and (2) by
understanding the action of these difference operators on the SGF and the asymptotics
of this action.

Finally, we note that the methods used in this article can be generalized to models

broader than uniform distributions on T (M)
λ . The generality of the methods encompass a

variety of models in asymptotic representation and two dimensional statistical mechanics.
The remainder of this article is organized as follows. In Section 2 we provide a more

detailed explanation of the model and the associated objects. In Section 3 we state and
prove the main results, (1) and (2) given above.

Acknowledgments. We would like to thank Vadim Gorin for suggesting and pro-
viding direction for this project. We are also grateful for comments and suggestions by
Claude Eicher and Tanya Khovanova. This material is based upon work done through
the PRIMES-USA program.

2. Setup

2.1. Definitions. A partition λ of length L is a sequence of positive integers

λ1 ≤ λ2 ≤ · · · ≤ λL.

Given a partition λ′ of length at most L − 1, we say that λ′ ≺ λ (pronounced “λ and λ′

interlace”) if

λ1 ≤ λ′1 ≤ λ2 ≤ λ′2 ≤ · · · ≤ λ′L−1 ≤ λL.

Throughout, ρ generally refers to a probability distribution on partitions, so the proba-
bility of picking some partition λ is ρ(λ).

We will extensively use Schur functions (also known as Schur polynomials) in our proofs,
and many details and basic results about them can be found in [BG]. For completeness,
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we review the basic definitions here. Suppose λ is partition of length at most N . Then
the Schur function sλ(x1, . . . , xN) is a symmetric polynomial given by

sλ(x1, . . . , xN) =
det
[
x
λj+N−i
i

]N
i,j=1∏

i<j(xi − xj)
.

The Schur functions form a linear basis for all symmetric polynomials in N variables.
We will also use the tool of Schur generating functions.

Definition 2.1. Given a probability distribution ρ on partitions, its Schur generating
function (abbreviated SGF) is given by

Sρ(x1, . . . , xN) =
∑
λ

ρ(λ)
sλ(x1, . . . , xN)

sλ(1, . . . , 1)
.

The reason we use these are twofold - the SGF for the particular model we are interested
in is relatively simple (see Theorem 2.2), and the probabilistic statistics we are interested
in can be related to the SGF by Theorem 2.5.

2.2. Uniform Distribution on GT Patterns. Let λ be some deterministic partition
of length M , and consider all sequences of partitions

λ(1) ≺ · · · ≺ λ(M) = λ.

This is known as a GT pattern with top row λ. Given the uniform distribution on GT
patterns with top row λ, let ρ(N) be the resulting marginal distribution for λ(N) where
N < M . It turns out that the SGF of ρ(N) has a really nice form.

Proposition 2.2. The SGF for ρ(N) is given by

Sρ(N)(x1, . . . , xN) =
sλ(x1, . . . , xN , 1

M−N)

sλ(1M)
.

Proof. This is a consequence of the so called branching rule, which states that

sλ(x1, . . . , xN , 1
M−N) =

∑
µ:µ=λ(N)≺···≺λ(M)=λ

sµ(x1, . . . , xN).(6)

This implies that

sλ(1
M) =

∑
µ:µ=λ(N)≺···≺λ(M)=λ

sµ(1N).

In particular if N = 1, we see that sλ(1
M) is the total number of GT patterns with top

row λ. The probability of λ(N) = µ is

ρ(N)(µ) =
sµ(1N)

sλ(1M)
·#{µ = λ(N) ≺ · · · ≺ λ(M) = λ}(7)

because the number of ways to get λ(N) = µ is equal to the number of ways to get µ from
λ times the number of configurations with µ in the top row divided by the total number
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of configurations (because things above µ and below are independent conditioned on µ).
To finish, note that

sλ(x1, . . . , xN , 1
M−N)

sλ(1M)
=

∑
µ:µ=λ(N)≺···≺λ(M)=λ

sµ(x1, . . . , xN)

sµ(1N)
· sµ(1N)

sλ(1M)

=
∑
µ

sµ(x1, . . . , xN)

sµ(1N)
· ρ(N)(µ)

= Sρ(N)(x1, . . . , xN)

where the first equality follows from (6) and the second follows from (7). �

We will be random measures known as counting measures which we define below.

Definition 2.3. Suppose ρ is a probability distribution on partitions of length N , and
suppose M is some positive integer. Then, a counting measure for ρ is given by

m[ρ] =
1

M

N∑
i=1

δ

(
λi +N − i

M

)
,

where we are treating λi as a random variable for the ith part of the partition.

Remark 1. This is one of the few times we will be referring explicitly to the random
variables λi. The only other place is in the proof of Theorem 2.5.

Our objects of study are

m(N) := m[ρ(N)],

and its discrete derivative given by

µ(N) := M(m(N) −m(N−1)).

Remark 2. To make the derivative interpretation explicit (as we will do later as well),
let η = N/M . In the limit of large M , we have

“
dm(N)

dη
” ≈ m(N) −m(N−1)

1/M
= µ(N).

In particular, we will be studying the moments of these measures, and their asymptotics
as M →∞.

2.3. Moments and Operators. The point of this section is that the moments of m(N)

and µ(N) can be found by applying certain differential operators on the SGF of ρ(N). The
following makes this explicit.

Definition 2.4. Define a differential operator on functions of (x1, . . . , xN) by

DN,k :=
1∏

1≤i<j≤N

(xi − xj)

(
N∑
i=1

(xi∂i)
k

) ∏
1≤i<j≤n

(xi − xj)

where ∂i := ∂
∂xi

.
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The next theorem shows the connection of this operator to moments of counting mea-
sures.

Theorem 2.5 ([BuG1, Proposition 4.6]). Let ρ be a probability distribution on partitions
of length N , and let M be some positive integer, and let m[ρ] be its counting measure.
The moments of this measure are given by

E
(∫

R
xkm[ρ](dx)

)n
=

1

Mn(k+1)
(DN,k)nSρ(x1, . . . , xN)

∣∣∣∣
x1=···=xN=1

.

Proof. We’ll sketch the proof of this result here. The key claim is that Schur functions sλ
are eigenfunctions of the operator DN,k (and of course this is the reason for introducing
it in the first place). In particular, we have that

DN,ksλ(x1, . . . , xN) =

(
N∑
i=1

(λi +N − i)k
)
sλ(x1, . . . , xN).

This is a straightforward computation with the determinant definition of the Schur func-
tions. By the definition of m[ρ], we have that

E
(∫

R
xkm[ρ](dx)

)n
=
∑
λ

ρ(λ)

(
1

M

N∑
i=1

(
λi +N − i

M

)k)n

.

By the above observation, this can be written as

E
(∫

R
xkm[ρ](dx)

)n
=

1

Mn(k+1)

∑
λ

ρ(λ)
DnN,ksλ(x1, . . . , xN)

sλ(x1, . . . , xN)
.

Evaluating the right side at x1 = · · · = xN = 1, the result is immediate by definition of
Sρ. �

2.4. Convergence. Our goal is to look at asymptotics as M →∞. To do this, we need
to first define the notion of convergence of partitions.

Definition 2.6 ([BuG1, Definition 2.5]). A sequence λ(M) of partitions is called regular
if there is a piecewise continuous function f(t) and a constant C such that

lim
M→∞

M∑
j=1

∣∣∣∣λj(M)

M
− f(j/M)

∣∣∣∣ = 0

and ∣∣∣∣λj(M)

M
− f(j/M)

∣∣∣∣ < C

for all j = 1, . . . ,M and M = 1, 2, . . ..

Remark 3. Essentially what this means is that the partitions converge to some shape
f(t). The second condition is a technical one to guarantee that the measures that we will
associate to the partitions are uniquely determined by their moments.
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The key result we want is about the asymptotics of Schur functions for a regular se-
quence. In particular, the Schur functions become asymptotically multiplicative. This
came up originally in [GP], and later appeared in [BuG1]. The formulation in [BuG1] is
most useful for our purposes.

Theorem 2.7 ([BuG1, Theorem 4.2]). Suppose λ(M) is a regular sequence of partitions.
There exists an analytic function H(x) defined in a neighborhood U of 1 such that for any
k ≥ 1, we have

lim
M→∞

1

M
log

(
sλ(M)(x1, . . . , xk, 1

M−k)

sλ(M)(1M)

)
= H(x1) + · · ·+H(xk)

where the convergence is uniform over x1, . . . , xk in compact subsets K ⊂ U .

3. Main Results

Theorem 3.1 ([BuG1, Theorem 5.1]). Let λ(M) be a regular sequence, and consider
the uniform GT-pattern with top row λ(M). Fix some constant 0 < η < 1, and let
N = bηMc. Then, the random measures m(N) converge to a deterministic measure m in
the limit M →∞ with moments∫

R
xkm(dx) =

k∑
`=0

η`+1 1

(`+ 1)!

(
k

`

)(
∂

∂z

)` (
zkH ′(z)k−`

)
,

where H(x) is the function of Theorem 2.7.

We also have the “derivative” of the above result.

Theorem 3.2. Let λ(M) be a regular sequence, and consider the uniform GT-pattern
with top row λ(M). Fix some constant 0 < η < 1, and let N = bηMc. Then, the random
measures µ(N) converge to a deterministic measure µ in the limit M →∞ with moments∫

R
xkµ(dx) =

k∑
`=0

η`
1

`!

(
k

`

)(
∂

∂z

)` (
zkH ′(z)k−`

)
,

where H(x) is the function from Theorem 2.7.

As mentioned in the introduction, Theorem 3.1 is a direct consequence of [BuG1, The-
orem 5.1], and Theorem 3.2, which is our new result, is an extension of it. We present a
proof of Theorem 3.1 similar in spirit to that given in [BuG1], but with methods optimized
so that we can change just a few steps to get Theorem 3.2.

Remark 4. Observe that the moments of µ are simply the derivatives of the moments of
m with respect to η. This can be viewed as the finite difference of measures becoming a
derivative of measures in the limit, see Remark 2.

3.1. Two Lemmas. We introduce two lemmas that will be useful in our analysis of
the moments of the counting measure. In particular, they help to reduce the number of
variables in the calculation. Before proceeding, we introduce the following notation.

Given a function f(z1, . . . , zn), define∑
cyc

f(z1, . . . , zn) := f(z1, . . . , zn) + f(z2, . . . , zn, z1) + · · ·+ f(zn, z1, . . . , zn−1).
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Lemma 3.3 ([BuG1, Lemma 5.5]). Let g(z) be a function analytic in some neighborhood
of z = 1. Then

lim
zi→1

∑
cyc

g(z1)

(z1 − z2)(z1 − z3) · · · (z1 − zn)
=

1

(n− 1)!

∂n−1g(z)

∂zn−1

∣∣∣∣
z=1

.

Lemma 3.4. For positive integers k, we have that

DN,k =
k∑

m=1

{
k

m

} m∑
`=0

(
m

`

)
`!

∑
{i0,...,i`}⊆[N ]

∑
cyc

xmi0∂
m−`
i0

(xi0 − xi1) · · · (xi0 − xi`)
,

where
{
k
m

}
are Stirling numbers of the second kind.

Proof. Let ∆(x) =
∏

i<j(xi−xj) denote the Vandermonde determinant. We first compute

∂mp ∆(x). By the Leibniz rule, we have

∂mp ∆(x) =
∑

∑
i<j ki,j=m

(
m

k1,2, . . . , kn−1,n

)∏
i<j

∂ki,jp (xi − xj).

With some work, this reduces to

∂mp ∆(x) = m!
∏
i<j

(xi − xj)
∑

S⊆[N ]\{p}
|S|=m

1∏
i∈S

(xi − xp)
.

It is well known that
N∑
i=1

(xi∂i)
k =

N∑
i=1

k∑
m=1

{
k

m

}
xmi ∂

m
i ,

so in fact

DN,k = ∆(x)−1
k∑

m=1

{
k

m

} N∑
i=1

xmi

m∑
`=0

(
m

`

)
(∂`i∆(x))∂m−`i

=
k∑

m=1

{
k

m

} m∑
`=0

(
m

`

)
`!

N∑
i=1

xmi
∑

S⊆[N ]\{i}
|S|=`

(∏
j∈S

1

xj − xi

)
∂m−`i .

But we have that

N∑
i=1

xmi
∑

S⊆[N ]\{i}
|S|=`

(∏
j∈S

1

xj − xi

)
∂m−`i =

∑
{i0,...,i`}⊆[N ]

∑
cyc

xmi0∂
m−`
i0

(xi0 − xi1) · · · (xi0 − xi`)
,

which completes the proof. �
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3.2. Proof of Theorem 3.1. We have to show that

lim
M→∞

E
(∫

R
xkm(N)(dx)

)
=

k∑
`=0

η`+1 1

(`+ 1)!

(
k

`

)(
∂

∂z

)` (
zkH ′(z)k−`

)
(8)

and

lim
M→∞

E
(∫

R
xkm(N)(dx)

)2

= lim
M→∞

(
E
(∫

R
xkm(N)(dx)

))2

.(9)

We will first show (8). Combining Theorem 2.5 and Proposition 2.2, we have that

E
(∫

R
xkm(N)(dx)

)
=

1

Mk+1
lim
xi→1
DN,k

(
sλ(x1, . . . , xN , 1

M−N)

sλ(1M)

)
.(10)

However, by Theorem 2.7, we can write

S(x1, . . . , xN) :=
sλ(x1, . . . , xN , 1

M−N)

sλ(1M)
= exp

(
N∑
i=1

MH(xi)

)
TN(x1, . . . , xN),(11)

where TN is analytic in some open neighborhood of (1N). We see that TN(1N) = 1 and

lim
M→∞

1

M
log TN(x1, . . . , xk, 1

N−k) = 0

for any fixed k and uniformly in some open neighborhood of (1k). We can differentiate
the above result to get

lim
M→∞

1

M

∂a11 · · · ∂
ak
k TN(x1, . . . , xk, 1

N−k)

TN(x1, . . . , xk, 1N−k)
= 0(12)

for any (a1, . . . , ak) ∈ Zk≥0. By Lemma 3.4, we have that

DN,kS =
k∑

m=1

{
k

m

} m∑
`=0

(
m

`

)
`!

∑
{i0,...,i`}⊆[N ]

∑
cyc

xmi0∂
m−`
i0

S

(xi0 − xi1) · · · (xi0 − xi`)
.(13)

We wish to take the limxi→1 of both sides. To do this we apply the following proposition.

Proposition 3.5. The leading order term of

L := lim
xi→1

∑
cyc

xmi0∂
m−`
i0

S

(xi0 − xi1) · · · (xi0 − xi`)

is
1

`!
Mm−`

(
∂

∂z

)`
(zmH ′(z)m−`)

∣∣∣∣∣
z=1

.

Proof. Since all functions are symmetric, we may assume {i0, . . . , i`} = {1, . . . , `+1}. We
see that we can set xr = 1 for r ≥ `+ 2, so we simply have

L = lim
x1,...,x`+1→1

∑
cyc

xm1 ∂
m−`
1 S(x1, . . . , x`+1, 1

N−`−1)

(x1 − x2) · · · (x1 − x`+1)
.

From (11) and (12), we have that the leading order term of

∂m−`1 S(x1, . . . , x`+1, 1
N−`−1)
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is Mm−`H ′(x1)
m−`S(x1, . . . , x`+1, 1

N−`−1). Thus, the leading order term of L is

Mm−` lim
x1,...,x`+1→1

∑
cyc

xm1 H
′(x1)

m−`

(x1 − x2) · · · (x1 − x`+1)
S(x1, . . . , x`+1, 1

N−`−1).

Applying Lemma 3.3 and noting that S(1N) = 1 yields the desired result. �

Therefore, the leading order term of the right side of (13) under the limit xi → 1 is

k∑
m=1

{
k

m

} m∑
`=0

(
m

`

)(
N

`+ 1

)
Mm−`

(
∂

∂z

)`
(zmH ′(z)m−`)

∣∣∣∣∣
z=1

.(14)

The order of the summand is M `+1Mm−` = Mm+1, so the only contribution in the limit
comes from m = k, so the leading order term is

Mk+1

M∑
`=0

η`+1

(`+ 1)!

(
∂

∂z

)`
(zmH ′(z)m−`)

∣∣∣∣∣
z=1

.

Thus, by (10), we have that

lim
M→∞

E
(∫

R
xkm(N)(dx)

)
=

k∑
`=0

η`+1 1

(`+ 1)!

(
k

`

)(
∂

∂z

)` (
zkH ′(z)k−`

)
,

as desired.
We’ll now show (9). We just want to show that the leading order terms of (DN,kS)2

and (DN,k)2S match up when we take xi → 1. We see that

(DN,kS)2 =
k∑

m=1

k∑
m′=1

{
k

m

}{
k

m′

} m∑
`=0

m∑
`′=0

(
m

`

)
`!

(
m′

`

)
`′!

∑
{i0,...,i`}⊆[N ]

∑
{i′0,...,i′`}⊆[N ]

∑
cyc

∑
cyc

(xmi0∂
m−`
i0

S)(xmi′0
∂m

′−`′
i′0

S)

(xi0 − xi1) · · · (xi0 − xi`)(xi′0 − xi′1) · · · (xi′0 − xi′`)

and

(DN,k)2S =
k∑

m=1

k∑
m′=1

{
k

m

}{
k

m′

} m∑
`=0

m∑
`′=0

(
m

`

)
`!

(
m′

`

)
`′!

∑
{i0,...,i`}⊆[N ]

∑
{i′0,...,i′`}⊆[N ]

∑
cyc

∑
cyc

(xmi0∂
m−`
i0

xmi′0
∂m

′−`′
i′0

)S

(xi0 − xi1) · · · (xi0 − xi`)(xi′0 − xi′1) · · · (xi′0 − xi′`)
.

The only difference in the two is the numerator of the final summand. We have the
following claim that is an analogue of Proposition 3.5.

Proposition 3.6. The leading order terms of

lim
xi→1

∑
cyc

∑
cyc

(xmi0∂
m−`
i0

S)(xmi′0
∂m

′−`′
i′0

S)

(xi0 − xi1) · · · (xi0 − xi`)(xi′0 − xi′1) · · · (xi′0 − xi′`)
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and

lim
xi→1

∑
cyc

∑
cyc

(xmi0∂
m−`
i0

xmi′0
∂m

′−`′
i′0

)S

(xi0 − xi1) · · · (xi0 − xi`)(xi′0 − xi′1) · · · (xi′0 − xi′`)

are identical.

Proof. As in the proof of Proposition 3.5, set xr = 1 for all r 6∈ {i0, . . . , i`} ∪ {i′0, . . . , i′`}.
Then, using (11) and (12), the leading order term of (xmi0∂

m−`
i0

S)(xmi′0
∂m

′−`′
i′0

S) is

Mm−`+m′−`′xmi0x
m′

i′0
H ′(xi0)

m−`H ′(xi′0)
m′−`′S2.

Now, the leading order term of (xmi0∂
m−`
i0

xmi′0
∂m

′−`′
i′0

)S is the same as the leading order term

of

Mm′−`′xmi0∂
m−`
i0

(xmi0H
′(xi′0)S).

When applying the product rule, we get a new factor of M when we apply the derivative
on the S, and we don’t for any of the other terms. Therefore, the leading order of this is

Mm−`+m′−`′xmi0x
m′

i′0
H ′(xi0)

m−`H ′(xi′0)
m′−`′S.

When taking xi → 1 and using lemma 3.3, we will get the same thing since S(1N)2 =
S(1N) = 1. Thus, the leading order terms match as desired. �

This shows (9), and the proof of Theorem 3.1 is complete.

3.3. Proof of Theorem 3.2. Repeating the proof of Theorem 2.5, we see that

E
(∫

R
xkµ(N)(dx)

)m
=

1

Mmk
(DN,k −DN−1,k)mSρ(N)(x1, . . . , xN)

∣∣∣∣
x1=···=xN=1

.(15)

We have from lemma 3.4 that

DN,k −DN−1,k =
k∑

m=1

{
k

m

} m∑
`=0

(
m

`

)
`!

∑
{i0,...,i`}⊆[N ]
N∈{i0,...,i`}

∑
cyc

xmi0∂
m−`
i0

(xi0 − xi1) · · · (xi0 − xi`)
.

Thus, the entire proof of Theorem 3.1 carries over, except the step at (14). Now, instead
of
(
N
`+1

)
, we will have (`+ 1)

(
N
`

)
. The loss of order of M by 1 here is compensated by the

same loss in (15). However, the factor of η`+1

(`+1)!
in Theorem 3.1 that came from

(
N
`+1

)
now

becomes η`

`!
. Thus, the moments of µ converge to

k∑
`=0

η`
1

`!

(
k

`

)(
∂

∂z

)` (
zkH ′(z)k−`

)
,

as desired. This completes the proof of Theorem 3.2.
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