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Abstract

In this research, we use agent-based models to solve conservation equa-
tions. A conservation equation is a partial differential equation that de-
scribes any conserved quantity by establishing a relationship between the
density and the flux. It is used in areas such as traffic flow and fluid
dynamics. Past research on numerically solving conservation equations
mainly tackles the problem by establishing discrete cells in the space and
approximating the densities in the cells. In this research, we use an agent-
based model, in which we describe the solution through the movement of
particles in the space. We propose an agent-based model for conservation
equation in 1-D space. We found a change of variables that transforms the
original conservation equation to the specific volume conservation equa-
tion. This transform allows us to apply results in finite volume method to
the agent-based model and find a condition for the agent-based solution
to converge to the exact solution of scalar conservation equations.

1 Introduction

A well-known partial differential equation is the conservation equation. In one-
dimensional space, the conservation equation is

∂tρ(x, t) + ∂xf(x, t) = 0, (1)

where ρ(x, t) is the density and f(x, t) is the flux, both of which are scalar

functions of position x and time t. Let the velocity function v(x, t) = f(x,t)
ρ(x,t) ,

then Equation (1) becomes ∂tρ + ∂x(ρv) = 0. When velocity only depends on
the density, Equation (1) becomes

∂tρ+ ∂x(ρv(ρ)) = 0. (2)

Equation (2) has many applications, such as modelling traffic systems where
the velocity of cars only depends on the density of cars.

There is much previous research on solving Equation (2). It can be solved
analytically using the method of characteristics [2]. People also developed nu-
merical methods such as the finite difference and finite volume method for ob-
taining approximations of the solution [3]. These methods discretize the space
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domain into fixed cells and track how the density in each cell changes with
time. Approaching the problem differently, the agent-based model does not set
up fixed cells, but rather uses the movement of agents on the space domain to
track the changes in density. The agent-based model is motivated by the La-
grangian description of a flow field because it attempts to simulate the changes
in density by tracking the movements of individual particles. While the agent-
based model is quite intuitive in the case of modelling traffic and fluid particles,
we want to explore the implementation of agent-based model to equations that
may not be derived from moving particles.

Given the initial density distribution, Finite volume method finds the density
in each cell at the next time step by approximating the fluxes going through the
cell walls. Past research has shown that when implementing the finite volume
method, choosing the correct flux approximation methods, such as the upwind
method and Godunov’s method, allows the numerical solution to converge to the
exact solution [3]. The central question this paper investigates is how we should
set up the agent-based model so that the numerical solution of the agent-based
model converges to the exact solution. To tackle the problem, we introduce
a change of variables that transforms the original conservation equation into
the conservation of specific volume equation. We observe that the agent-based
model can be understood as a finite-volume method for the specific volume
conservation equation. This observation produces our main theorem, which,
in informal terms, states that given an agent-based model, if its corresponding
finite-volume method converges for the specific volume conservation equation,
the agent-based model converges for the original conservation equation. This
result gives us a condition for the convergence of the agent-based model and
allow us to apply results about finite volume method to agent-based models.

The paper contains the following sections. Section 2 defines the agent-based
model that we study and provides background knowledge for the finite volume
method, which is necessary for understanding our main result. Section 3 intro-
duces the change of variables and proves important properties of the change of
variables. Section 4 contains the proof of our main theorem, which gives a con-
dition for the convergence of the agent-based model. Section 5 gives an example
of an agent-based model that converges. Section 6 discusses implementing the
agent-based model to solve systems of conservation equation. Section 7 discusses
potential topics for future research.

2 Preliminaries

2.1 Finite Volume Method

Finite volume method is a widely used numerical method for Equation (2) and is
related to the agent-based model. Finite volume method calculates the change
of ρ in each cell by calculating the fluxes going through the two cell walls [3].
We first discretize the space domain into cells of length ∆x and the time domain
into time steps ∆t apart. Let ρnj denote the density in the cell [xj , xj+1] at the
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time step tn and let Fnj be the flux through the cell wall at xj at time step tn.
At each time step, we calculate the flux through a cell wall using a numerical
flux function F (ρL, ρR) where ρL and ρR are the densities in the cells left and
right of the cell wall respectively. Given a finite volume method, the function
f(ρL, ρR) is the same for all cell walls at all time steps. At the time step tn, the
numerical fluxes is given by Fnj = F (ρnj−1, ρ

n
j ). We then calculate the densities

at the next time step with

ρn+1
j = ρnj +

∆t

∆x
(Fnj−1 − Fnj ). (3)

Given ρ0
j , the numerical density at t0 initialized according to the initial condition

ρ(x, 0), we can obtain the numerical solution at any time step tn by applying
Equation (3) for n times.

Equation (3) is derived from the integral form of Equation (1). Integrating
with respect to x over [x0, x0 + ∆x] and with respect to t over [t0, t0 + ∆t] of
equation (1) gives us∫ x0+∆x

x0

ρ(x, t0 + ∆t)− ρ(x, t0)dx =

∫ t0+∆t

t0

f(x0, t)− f(x0 + ∆x, t)dt,

ρ (t0+∆t) = ρ t0 +
∆t

∆x
(fx0

− fx0+∆t),

where ρ t0 is the average density in [x0, x0 + ∆x] at t0 and fx0
is the average

flux over the time period [t0, t0 + ∆t] at x0.
Different finite volume methods are defined by different numerical flux func-

tion. For example, the upwind method approximates the flux using

F (ρL, ρR) =
1

2
(f(ρL) + f(ρR)− a(ρR − ρL))

where a = f ′(ρL) if ρL = ρR and a = f(ρL)−f(ρR)
ρL−ρR if ρL 6= ρR.

2.2 Agent-based Model

In the agent-based model, we first discretize the time domain into discrete time
steps of length ∆t. Let each agent carries the mass ∆m. To initialize the model,
we place an agent P0 at x = 0. For an initial condition ρ(x, 0), we place the
agent Pj at x = xj whenever

∫ xj

0
ρ(x, 0)dx = j∆m for any integer j. As shown

in Figure 1, given an distribution of the n agents, the numerical density ρnj
between agents Pj+1 and Pj is calculated as ∆m/(xj+1−xj) where xj+1 and xj
are the location of the two agents that are adjacent to the location x. Because
of the way the agent-based model is initialized, the numerical density in the
initial time step equals to the average density

ρ0
j =

∫ xj+1

xj
ρ(x, 0)dx

xj+1 − xj
.
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The velocities of the agents at each time step are defined by a function
V (ρL, ρR), where ρL and ρR are the numerical densities to the left and right of
the agent. Let xnj denotes the position of Pj at time step tn. Let V nj denote the

velocity of Pj . Then xn+1
j = xnj + V nj ∆t.

Figure 1: The Numerical Density Calculated from the Distribution of Agents

It is important to note that the agent-based model is different from a finite
volume method with moving mesh, such as the one discussed in [5]. In a moving
mesh finite volume method, although the cell walls are moving, the density in
each cell is still approximated from the fluxes through the cell walls. On the
other hand, the density in the agent-based model is approximated from the
distance between the agents.

In this paper, we assume that ∆t are small enough such that the agent Pj
never surpasses Pj+1 for all integer j at all time steps. This paper investigates
what kind of V (ρL, ρR) we should give to the agents so that the numerical
solution of the agent-based model converges to the exact solution. Figure 2 and
Figure 3 shows the numerical solutions obtained from a finite volume method
and an agent-based model for the inviscid Burgers equation. In Figure 3, each
dot represents an agent. The x-coordinate of the dot shows the position of the
agent and the y-coordinate of the dot shows the numerical density on the left
side of the agent. In this specific example from Figure 3, the agent-based model
seems to approximate the exact solution well and suggests that it is reasonable
to attempt to find a convergence condition for agent-based models.

3 Conservation of Specific Volume

This section introduces the change of variables that allows us to find the con-
dition under which the agent-based model converges to an exact solution. This
change of variable is from the observation that the distances between adjacent
agents change in the same way as the densities in the cells of a finite volume
method. Let dnj be the distance between the agents Pj and Pj+1 at time step
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at t0 at t1 at t2

Figure 2: Numerical solution obtained from finite volume method. Horizontal
axis: position. Vertical axis: density

at t0 at t1 at t2

Figure 3: Numerical solution obtained from the agent-based model. Horizontal
axis: position. Vertical axis: density
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tn. Then dn+1
j = dnj + V nj+1∆t− V nj ∆t. Let σnj =

dnj
∆m . Then

σn+1
j = σnj +

∆t

∆m

(
(−V nj )− (−V nj+1)

)
. (4)

Note that Equation (4) is simply Equation (3) with the variables renamed.
More specifically, Equation (4) is the finite volume equation for the conservation
equation

∂tσ(m, t)− ∂mv = 0.

Therefore, there is some connection between the finite volume method and the
agent-based model. The change of variable introduced in this section is moti-
vated by this observation and helps us understand the relation between the two
seemingly different numerical methods.

Let ρ : R × [0, T ] → R+ be a strong solution to Equation (2) such that
limx→∞

∫ x
0
ρ(x′, t)dx′ =∞ and limx→−∞

∫ x
0
ρ(x′, t)dx′ = −∞. We also assume

that v(ρ) is a continuous function. Let m(x, 0) =
∫ x

0
ρdx and let

m(x, t) =m(x, 0) +

∫ t

0

−f(x, a)da. (5)

Taking, the derivatives of m(x, t), we get the following.

∂tm(x, t) = −f(x, t),

∂xm(x, t) = ρ(x, 0)−
∫ t

0

−ρt(x, a)da

= ρ(x, t).

Thus, intuitively, m can be understood as the mass because its spacial derivative
is density ρ. Because ρ(x, t) > 0, the function g : (x, t) 7→ (m(x, t), t) is a
bijection whose domain and codomain are R× [0, T ] . Therefore, we can rewrite
ρ(x, t) as p(m(x, t), t) where the function p(m, t) = ρ(g−1(m, t)). Let the specific
volume σ(m, t) be defined as σ(m, t) = 1

p(m,t) . Because g has x and t derivatives,

g−1 has m and t derivatives, so σ(m, t) has m and t derivatives.

Lemma 3.1. σ(m, t) is a strong solution for

∂tσ(m, t)− ∂mv(
1

σ(m, t)
) = 0. (6)

Proof. Because ρ(x, t) satisfies Equation (2),

0 =∂tρ(x, t) + f ′(ρ)∂xρ(x, t)

=∂tp(m(x, t), t) + f ′(p) ∂xp(m(x, t), t)

=
∂p(m, t)

∂t
+
∂p(m, t)

∂m

∂m(x, t)

∂t
+ f ′(p)

∂p(m, t)

∂m

∂m(x, t)

∂x
.
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Plugging in f(p) = pv(p) and the derivatives of m(x, t), we have

0 =
∂p(m, t)

∂t
+ p2v′(p)

∂p(m, t)

∂m
.

Timing the expression by − 1
p2 and plugging in σ = 1

p , we have

0 =
∂σ(m, t)

∂t
+
v′( 1

σ )

σ2

∂σ(m, t)

∂m

=∂tσ(m, t)− ∂mv(
1

σ(m, t)
).

Recall that σ(m, t) has m and t derivatives. Thus σ(m, t) is a strong solution.

This theorem shows that the change of variable in g : (x, t) 7→ (m(x, t), t)
produces a solution for Equation (6). We now construct an expression for the
inverse function g−1. Essentially, we need a function that, given any m0 and t,
finds the position x0 such that m0 = m(x0, t), or, more intuitively, tracks the
trajectory of a fixed m0. Let k(t) be a function of time such that ∂tm(k(t), t) =
0. Then, applying the chain rule and plugging in the derivatives of m produces

ρ(k, t)∂tk + f(k, t) = 0.

Recall f(k, t) = ρ(k, t)v(k, t). Thus, ∂tk = v(k, t) and the trajectory k is a
stream line of the velocity field v(x, t). We then deduce that the inverse with
respect to x of the function m(x, t) is

x(m, t) = x(m, 0) +

∫ t

0

v(
1

σ(m, t′)
)dt′, (7)

where x(m, 0) is the inverse of m(x, 0). Notice that ∂tx(m, t) = v( 1
σ(m,t) ), which

shows that it is a stream line. Intuitively, Equation (7) can be understood as
the original position of m and how much m has traveled until time t. Thus, the
inverse of g is simply g−1 : (m, t) 7→ (x(m, t), t).

Finding g−1 allows us to transform a solution of Equation (6) into a solution
of Equation (2). Let ρ0(x) be a smooth initial condition. Applying the change of
variable in Equation (5) for only t = 0 gives us σ(m, 0). Let σ(m, t) be a strong
solution for Equation (6) with σ(m, 0) as the initial condition for t ∈ [0, T ].
Let a(x, t) be the function such that a(x(m, t), t) = σ(m, t) for all m ∈ R and
t ∈ [0, T ]. Let ρ(x, t) = 1

a(x,t) .

Lemma 3.2. ρ(x, t) is a strong solution of Equation (2) that satisfies the initial
condition ρ0(x).

Proof. The proof of this lemma relies on an observation on the symmetry of the
transformation. After exchanging the names of m and x, ρ and σ, p and a, f
and −v, Equation (2) becomes Equation (6) and Equation (5) becomes Equation
(7). The arguments for Lemma 3.1 then applies to the current lemma, so ρ(x, t)
satisfies Equation (2). Because x(m, 0) is the inverse of m(x, 0) with respect to
x, ρ(x, 0) = ρ0(x). The proof is complete.
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The proof of this lemma reveals that the transformation described by Equa-
tion (5) has order 2 in the sense that if we apply this transformation two times
to a solution of a conservation equation, we get the original solution. This re-
sult is confirmed by the fact that given a initial condition, there is a unique
strong solution to Equation (2) [1]. Our result also implies that considering the
conservation of specific volume is looking at the conservation of mass from a
different perspective and solving one allows us to solve the other one.

Lemma 3.3. For t ∈ [0, T ],∫m2

m1
σ(m, t)dm

m2 −m1
=

x2 − x1∫ x2

x1
ρ(x, t)dx

, (8)

where x2 > x1, m1 = m(x1, t), and m2 = m(x2, t).

Proof. Because ∂xm = ρ, it comes naturally that
∫ x2

x1
ρ(x, t)dx = m2 − m1.

Applying a substitution to the denominator of the expression of the left gives
us ∫ m2

m1

σ(m, t)dm =

∫ x2

x1

1

ρ(x, t)
ρ(x, t)dx

= x2 − x1.

4 Convergence of Maximum Norm

Let ρ(x, 0) be the initial condition. Applying the transformation in Equation (5)
gives us σ(m, 0), the initial condition for the conservation of specific volume.
Given a velocity rule V (ρL, ρR) for the agent-based model, the finite volume
method for Equation (6) is set up in the following way. Let mj = j∆m and
we set up a cell wall at each mj for all integer j. The initial numerical specific
volume σ0

j between mj and mj+1 is set to

σ0
j =

∫mj+1

mj
σ(m, 0)

mj+1 −mj
.

The numerical flux −V nj going through the cell wall at mj at time step tn is

−V ( 1
σn
j−1

, 1
σn
j

) where V is the velocity rule for the agent based model. Thus,

every agent-based model has a finite volume counterpart. The convergence
is considered in the maximum norm. We choose to use the maximum norm
because it allows us to apply our result in the domain of real numbers to periodic
domains.

Let T > 0 and n be a positive integer such that n∆t < T .
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Theorem 4.1. Suppose the numerical flux from the finite volume method of
specific volume has

max
j

(|
n−1∑
n′=0

V n
′

j ∆t−
∫ tn

0

v(mj , t)dt|) ≤ γ(∆t) (9)

where v(m, t) is the velocity field from an exact solution σ(m, t) of Equation (6)
and γ is a strictly increasing function such that lim∆t→0 γ(∆t) = 0. Then, there
exists ρ(x, t) that is a solution for Equation (2) such that

max
j

(|ρnj −

∫ xn
j+1

xn
j

ρ(x, tn)dx

xj+1 − xj
|) ≤ Cγ(∆t) (10)

for all ∆t ≤ ∆tc where ∆tc and C are constants that depends only on the initial
condition ρ(x, 0).

Proof. Let σmin be the minimum σ(m, t) for all t ∈ [0, T ], which equals the
minimum of σ(m, 0). Let ∆tc be a solution to ∆mσmin−2γ(∆t) > 0. Note that
∆tc only depends on ρ(x, 0) because σ(m, 0) is determined by ρ(x, 0). Let ∆t <
∆tc. We first show that the convergence of the numerical velocity means the
convergence of the numerical specific volume. For convenience, let σ̄(mj , tn) =∫ mj+1

mj
σ(m,tn)dx

mj+1−mj
. Because σnj = σ0

j +
∑n−1
n′=0

∆t
∆m (V n

′

j+1 − V n
′

j ) and σ̄(mj , tn) =

σ̄(mj , 0) + 1
∆m

∫ tn
0
v(mj+1, t)− v(mj , t)dt, we have

max
j

(|σnj − σ̄(mj , tn)|) ≤max
j

(| ∆t

∆m

n−1∑
n′=0

V n
′

j+1 −
1

∆m

∫ tn

0

v(mj+1, t)dt

−(
∆t

∆m

n−1∑
n′=0

V n
′

j ∆t− 1

∆m

∫ tn

0

v(mj , t)dt)|)

≤2γ(∆t)

∆m
.

The finite volume method is connected to the agent-based model because the
density between agents equals to the reciprocal of the specific volume between
cell walls as shown below.

ρn+1
j =

∆m

xn+1
j+1 − x

n+1
j

=(
xnj+1 − xnj + (V nj+1 − V nj )∆t

∆m
)−1

=(σnj +
∆t

∆m
(V nj+1 − V nj ))−1

=
1

σn+1
j

.
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Let ρ(x, t) be the function constructed from σ(m, t) using the change of
variable in Equation (7). By Lemma 3.2, ρ(x, t) is a solution Equation (2).
Now, we need to show that the numerical solution converges to ρ(x, t). For
convenience, let

ρ̄(xnj , tn) =
1

xnj+1 − xnj

∫ xn
j+1

xn
j

ρ(x, tn)dx,

ρ̄(x(mj , tn), tn) =
1

x(mj , tn)− x(mj+1, tn)

∫ x(mj+1,tn)

x(mj ,tn)

ρ(x, t)dx

where x(m, t) is the exact change of variable from Equation (7). Note that
ρ̄(x(mj , tn), tn) is different from ρ̄(xnj , tn) because there is a difference between
the numerical position xnj and the exact position x(mj , tn). Because of Lemma

3.3, ρ̄(x(mj , tn), tn) = 1
σ̄(mj ,tn) . Now we consider the error of the agent based

model.

|ρnj − ρ̄(xnj , tn)| =| 1

σnj
− 1

σ̄(mj , tn)
+

1

σ̄(mj , tn)
− ρ̄(xnj , tn)|

≤| 1

σnj
− 1

σ̄(mj , tn)
|+ |ρ̄(x(mj , t), t)− ρ̄(xnj , tn)|

Because σnj ≥ σmin − 2γ(∆tc)
∆m ,

| 1

σnj
− 1

σ̄(mj , tn)
| ≤
|σnj − σ̄(mj , tn)|
|σnj σ̄(mj , tn)|

≤ 2γ(∆t)

σmin(∆mσmin − 2γ(∆tc))
.

Let ρmax be the maximum of ρ(x, t) over t ∈ [0, T ]. Note that ρmax = 1
σmin

.

Recall that xnj = x0
j +

∑n−1
n′=0 V

n′

j ∆t and x(mj , tn) = x(mj , 0) +
∫ tn

0
v(mj , t)dt.

Because of the way the agent=based model is initialized, x0
j = x(mj , 0). Thus,

|xnj − x(mj , tn)| = |
∑n−1
n′=0 V

n′

j ∆t−
∫ tn

0
v(mj , t)dt|) ≤ γ(∆t). Then,

ρ̄(xnj , tn) ≤ (x(mj+1, tn)− x(mj , tn))ρ̄(x(mj , t), t) + 2ρmaxγ(∆t)

x(mj+1, tn)− x(mj , tn)− 2γ(∆t)

For any a > 0 and xc ∈ (0, a), we have a
a−x ≤

x
a−xc

+ 1 for all x ∈ [0, xc]. In
our case, a = x(mj+1, tn)− x(mj , tn), xc = 2γ(∆tc), and x = 2γ(∆t). Thus,

ρ̄(xnj , tn) ≤ρ̄(x(mj , t), t) +
2γ(∆t)ρ̄(x(mj , t), t)

x(mj+1, tn)− x(mj , tn)− 2γ(∆tc)

+
2ρmaxγ(∆t)

x(mj+1, tn)− x(mj , tn)− 2γ(∆t)

≤ρ̄(x(mj , t), t) +
4γ(∆t)ρmax

x(mj+1, tn)− x(mj , tn)− 2γ(∆tc)
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Because x(mj+1, tn)− x(mj , tn) =
∫mj+1

mj
σ(m, tn)dm ≥ ∆mσmin,

ρ̄(xnj , tn) ≤ ρ̄(x(mj , t), t) +
4ρmax

∆mσmin − 2γ(∆tc)
γ(∆t)

Similarly, we have

ρ̄(xnj , tn) ≥ (x(mj+1, tn)− x(mj , tn))ρ̄(x(mj , t), t)− 2ρmaxγ(∆t)

x(mj+1, tn)− x(mj , tn) + 2γ(∆t)
.

For any a > 0, a
a+x > 1−xa when x > 0. Substituting a = x(mj+1, tn)−x(mj , tn)

and x = 2ρmaxγ(∆t) produces

ρ̄(xnj , tn) ≥ρ̄(x(mj , t), t)−
2ρ̄(x(mj , t), t)

x(mj+1, tn)− x(mj , tn)
γ(∆t)

− 2ρmax

x(mj+1, tn)− x(mj , tn) + 2γ(∆t)
γ(∆t),

≥ρ̄(x(mj , t), t)−
4ρmax

x(mj+1, tn)− x(mj , tn)
γ(∆t),

≥ρ̄(x(mj , t), t)−
4ρmax

∆mσmin − 2γ(∆tc)
γ(∆t).

Therefore,

|ρ̄(x(mj , t), t)− ρ̄(xnj , tn)| ≤ 4ρmax

∆mσmin − 2γ(∆tc)
γ(∆t),

≤ 4

σmin(∆mσmin − 2γ(∆tc))
γ(∆t).

Thus,

max
j
|ρnj − ρ̄(xnj , tn)| ≤ 6

σmin(∆mσmin − 2γ(∆tc))
γ(∆t). (11)

Recall that σmin only depends on ρ(x, 0). The proof is complete.

This proof essentially shows that if the velocity approximation rule V (ρL, ρR)
gives us the correct specific volume solution when we use it in the finite volume
method for specific volume, the agent-based solution converges to the exact solu-
tion. Moreover, the agent-based model converges in the same order as the finite
volume method. The reason that the convergence condition is the convergence
of velocity, or the specific volume flux, instead of the convergence specific volume

is because ∂tσ(m, t) + ∂mv( 1
σ(m,t) ) = 0 and ∂tσ(m, t) + ∂m

(
v( 1
σ(m,t) ) + k

)
= 0

where k is a constant have the same σ(m, t) as the solution, but the ρ(m, t)
obtained from σ(m, t) will be different because the velocities in the two cases
are offset by k.
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5 Example: Godunov’s Method

Theorem 4.1 shows that we can determine whether an agent-based model con-
verges to the exact solution by examining whether its corresponding finite vol-
ume method converges. Therefore, if we know a finite volume method converges,
we can “translate” it to an agent-based model that will also converge, allowing
us to apply results in finite volume methods to the agent-based model.

Consider the conservation equation ∂tu(x, t) + ∂xf(u(x, t)). The Godunov’s
Method is a finite volume method that approximate the interface flux by solving
the Riemann problem [3]. Suppose two adjacent cells have density unj−1 and unj
and their boundary is at xj at time step tn, we consider the Riemann problem
with the condition initial condition

u(x, 0) =

{
unj−1 x ≤ xj
unj x > xj .

Let u(x, t) be the solution to the Riemann problem. Suppose u(xj , t) = u′ where
u′ is constant for t ∈ (0,∆t]. Then, the interface flux at the boundary xj is
Fnj = f(u′). Results in solving the Riemann problem shows that the interface
flux should be

Fnj =

{
min[un

j−1,u
n
j ] f(u) unj−1 ≤ unj

max[un
j ,u

n
j−1] f(u) unj−1 > unj .

In the conservation of specific volume, u(x, t) is replaced by σ(m, t) and f(u(x, t))
by −v( 1

σ(m,t) ). The specific volume flux law in Godunov’s method is therefore

−V (
1

σnj−1

,
1

σnj
) =

{
−(max[σn

j−1,σ
n
j ] v( 1

σ )) σnj−1 ≤ σnj
−(min[σn

j ,σ
n
j−1] v( 1

σ )) σnj−1 > σnj .

The agent-based model that correspond to this finite volume flux law therefore
has the following velocity rule.

V (ρnj−1, ρ
n
j ) =

{
min[ρnj−1,ρ

n
j ] v(ρ) ρnj−1 ≤ ρnj

max[ρnj ,ρ
n
j−1] v(ρ) ρnj−1 > ρnj

(12)

The example of the inviscid Burgers equation can clarify how the agent-based
model using the velocity rule in Equation (12) is implemented. The inviscid
Burgers equation is ∂tρ(x, t)+∂t(

1
2ρ

2) = 0, so v(ρ) = 1
2ρ is the velocity term [4].

The agent-based model derived from Godunov’s method for the inviscid Burgers
equation therefore has the velocity rule

V (ρnj−1, ρ
n
j ) =

{
1
2ρ
n
j−1 ρnj−1 ≤ ρnj

1
2ρ
n
j ρnj−1 > ρnj

Because Godunov’s method converges for scalar conservation laws, the agent-
based model that uses the velocity approximation rule in Equation (12) con-
verges to the exact solution. In fact, the agent-based model that produces
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Figure 3 uses the velocity rule derived from Godunov’s method. By the process
described in this section, we can construct an agent-based model for any finite
volume method.

6 Systems of Conservation Equations

This section discusses the possibility and the mathematical difficulty of apply-
ing the agent-based model to systems of conservation equations. Systems of
conservation equation can be written as

∂t~ρ(x, t) + ∂x ~f(~ρ(x, t)) = ~0, (13)

where ~ρ and ~f are n dimensional vectors. Equation (2) studied in previous
sections is the case when n = 1. This section only discusses the case when
n = 2, which already shows how we can extend the agent-based model to n > 2
and the main difficulties in generalizing the result in n = 1 to n > 1. When
n = 2, Equation (13) can be written as

∂tρ1(x, t) + ∂xf1(ρ1(x, t), ρ2(x, t)) = 0 (14)

∂tρ2(x, t) + ∂xf2(ρ1(x, t), ρ2(x, t)) = 0, (15)

where f1 = ρ1v1(ρ1, ρ2) and f2 = ρ2v2(ρ1, ρ2). The agent-based model is set up
in the following way. There are two kinds of agents P and Q, which represents
ρ1 and ρ2 respectively. Let each agent carries the mass ∆m. To initialize the
agent simulation, we place agents P0 and Q0 at x = 0. For an initial condition
ρ1(x, 0), we place agent Pj at x = xj whenever

∫ xj

0
ρ1(x, 0)dx = j∆m for

any integer j. For an initial condition ρ2(x, 0), we place agent Qj at x = xj
whenever

∫ xj

0
ρ2(x, 0)dx = j∆m for any integer j. Given an distribution of the

n P agents, the numerical density ρn1j between agents Pj+1 and Pj is calculated
by ∆m/(xj+1−xj) where xj+1 and xj are the location of the two P agents that
are adjacent to the location x. The numerical density ρn2j is calculated in the
same way using Q agents. The velocity of agent Pj at position xj are determined
by a function V1(ρ1L, ρ1R, ρ2L, ρ2R) where ρ1L is the numerical density ρ1 to the
left of xj , ρ1R the numerical density ρ1 to the right of xj , ρ2L the numerical
density ρ2 to the left of xj , and ρ2R the numerical density ρ2 to the right of xj .
When there is no Q agent at the position of Pj , ρ2L = ρ2R because the density
ρ2 to the left and right of Pj is the same. Because it is almost impossible for
the agents to completely overlap, there is often no need to consider the case of
ρ2L 6= ρ2R The velocity of agent Qj at position xj are determined by a function
V2(ρ1L, ρ1R, ρ2L, ρ2R). For the same reason, we often have ρ1L = ρ1R. Once the
velocities V1 and V2 are calculated, the agents’ positions are updated for the
next time step.
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Figure 4: horizontal axis represents location; vertical axis represents density;
grey dots represent ρ1; black squares represent ρ2

We implemented the agent-based model for the system of conservation equa-
tions that uses the velocity rule

v1(ρ1, ρ2) = vm1

(
1− ρ1 + ρ2

ρm

)
,

v2(ρ1, ρ2) = vm2

(
1− (

ρ1 + ρ2

ρm
)2
)
,

which is used for modelling traffic flow. Figure 4 shows three screen shots for
the solution obtained from the agent-based model.

6.1 Change of Variables for Systems of Conservation Equa-
tions

For the scalar conservation equation, applying the change of variable in Equa-
tion (5) allows us connect the convergence of finite volume methods to the
convergence of agent-based models. In this section, we apply the same change
of variable to Equation (14) and Equation (15). We define the new variables
m1(x, t), m2(x, t) as

m1(x, t) = m1(x, 0)−
∫ t

0

f1(x, t′)dt′, (16)

m2(x, t) = m2(x, 0)−
∫ t

0

f2(x, t′)dt′, (17)

wherem1(x, 0) =
∫ x

0
ρ1(x′, 0)dx′ andm2(x, 0) =

∫ x
0
ρ2(x′, 0)dx′. Let p1(m1(x, t), t) =

ρ1(x, t) and p2(m2(x, t), t) = ρ2(x, t). We then have

∂tρ1(x, t) + ∂x(ρ1v1(ρ1, ρ2))

=
∂p1(m1, t)

∂t
+
∂p1(m1, t)

∂m1

∂m1(x, t)

∂t
+
∂p1(m1, t)

∂m1

∂m1(x, t)

∂x
v1(ρ1, ρ2)

+ p1(m1, t)(
∂v1

∂p1

∂p1

∂m1

∂m1

∂x
+
∂v1

∂p2

∂p2

∂m2

∂m2

∂x
).
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Because ∂m1(x,t)
∂t = −f1(x, t) = −∂m1(x,t)

∂x v1(ρ1, ρ2), we have

=
∂p1(m1, t)

∂t
+ p1(m1, t)(

∂v

∂p1

∂p1

∂m1
p1 +

∂v

∂p2

∂p2

∂m2
p2).

Multiplying the equation by − 1
p21

produces

∂t(
1

p1(m1, t)
)− ∂v

∂p1

∂p1

∂m1
− ∂v

∂p2

∂p2

∂m2

p2

p1

=∂tσ1(m1, t)− ∂m1v1(p1(m1, t), p2(m2, t)).

Doing the same change of variable on the equation for ρ2, the original system
of conservation equations becomes

∂tσ1(m1, t)− ∂m1v1(p1(m1, t), p2(m2, t)) = 0, (18)

∂tσ2(m1, t)− ∂m2v2(p1(m1, t), p2(m2, t)) = 0. (19)

It is important to note that the new system in Equation (18) is no longer a
system of conservation equation because σ1 is a function of m1 and t while
σ2 is a function of m2 and t. In fact, we need Equation (16) and Equation
(17) to implicitly define the relation between m1 and m2 to make the system
of specific volume conservation meaningful. Because the new system is not a
system of conservation equations, we cannot simply treat the agent-based model
as a finite volume method for specific volume, which is our the main technique
for the scalar case.

7 Conclusion and Future Work

In our work, we propose an agent-based model for solving the conservation
equation. By introducing a change of variables, we transform the original con-
servation equation to the conservation of specific volume. This transformation
then allows us to prove that the agent-based solution converges if the finite
volume method for the conservation of specific volume converges. This result
enables us to apply past results in finite volume methods to agent-based mod-
els as each finite volume method has its agent-based version. We also extend
the agent-based model for scalar conservation equations to vector conservation
equations and show the difficulty of proving convergence for the agent-based
model for vector equations.

One can generalize our work in the scalar conservation equation by consid-
ering convergence in different norms. For example, Theorem 4.1 likely can be
extended to Lp norm. This extension would allow the application of more re-
sults in finite volume methods to agent-based models since many of the results
are in Lp norms.

Another natural choice for future work is to find the criteria for the agent-
based solution to converge for the vector conservation equation. This maybe
difficult because the change of variable discussed in Section 6 shows that it is

15



unlikely that we can directly connect results in finite volume methods to agent-
based models as we did with the scalar case.

Lastly, it would also be meaningful to compare agent-based models with
finite volume methods. Although it is likely that the two methods are the same
for scalar conservation equations, the two methods have major differences for
vector conservation equations. In a traditional finite volume method, different
densities use the same cells, so the cell walls for different densities line up with
each other. Thus, the flux approximation needs to take into account the densities
on the left and the right of the wall. Agent-based models may have an advantage
over traditional finite volume methods as the agents for different densities almost
never line up, making velocity approximation easier.
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