Secure Image Classification
with Lattice-Based Fully
Homomorphic Encryption

Sanath Govindarajan, Walden Yan

Mentor: William Moses

Scenario

You are a doctor who has a patient’s x-ray images. You
want to send it to a third-party service which specializes in
detecting bone defects. But you cannot legally send the
Images without compromising the privacy of the patient,
due to HIPAA / other privacy laws. Is there no hope?

How do we perform computations
without giving away the data?

Solution

We created a fully homomorphic encryption scheme that is
capable of performing the operations required by a neural
network. Then, we created methods of adapting and
training neural networks to run efficiently with this
encryption scheme, with minimal loss to accuracy.

Introducing Fully Homomorphic

Encryption (FHE)[1]

» Supports arbitrary computation on encrypted data

Eve (Untrusted

Alice (Se”der)zg Receiver)
Encryption
" E(n)
Computation
Decryption ”

[1] Acar, Abbas, Aksu, Hidayet, Uluagac, Selcuk, Conti, Mauro 2017

Uses of FHE

» Using FHE, we can send off our tasks to someone with a more powerful computer or a
better algorithm, without worrying about data leaks.

» Email filtering
» Medical applications, e.g. image classification
» Defense
>

Finance

Road Map

» \We need to be able to:
» Encrypt data
» Homomorphically compute on the encrypted data

» Run inference on the encrypted data using a neural network

Neural Networks

Amazing Achievements

» Translation between languages [1]
» WaveNet: speech generation [2, 3]
» Lip reading [4]

» Visual reasoning [5]

[1] Wu, Schuster, Chen, Le, Norouzi 2016

[2] van den Oord, Kalchbrenner, Kavukcuoglu 2016

[3] van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu 2016
[4] Chung, Senior, Vinyals, Zisserman 2016

[5] Santoro, Raposo, Barrett, Malinowski, Pascanu, Battaglia, Lillicrap 2017

Neural Networks

Hidden
Input
Output

» Mimic the brain YES

» Layers of artificial neurons NO

» Input Layer

» Receives data for user
» Output Layer

» Gives specific information about input
» Hidden Layers

» Computations needed to transform input into output

The Basic Neuron

Outputs

Activation
function

Building and Using Networks (On Images)

» Training
» Requires a huge dataset of training images
» Mathematically modify weights to fit training examples

» Takes up a lot of time

» Inference

» Feed brand new images with the correct output unknown =
» Returns what the network believes the images to be

» Much faster than training

Required Operations

» Matrix (Tensor) addition, subtraction and multiplication

» Division by constants

» Activation functions
» RelLU

» Pooling

» Max Pooling

» Generally third parties have to do these computations

» Services cannot always be trusted to not steal information

Who Needs Trust?

Lattice-Based Cryptography: a Somewhat
Homomorphic Scheme [1]

Lattice-based cryptography is based on the Learning with Errors problem

a b c U 3 Xu X
d e fI{ v]=l 3xv | +y
g h j w 3 X W -

Cipher Secret Key Plaintext (u) =3 Error vector with
small coefficients

[1] Gentry, Craig, Sahai, Amit, Waters, Brent 2013

Constraints of FHE

» Gentry’s Scheme makes multiplication and addition homomorphic in practice, but with
the restriction that u € {0, 1}

» Use list of encrypted binary digits to represent larger numbers

» Use fixed-point numbers instead of floating-point numbers for practicality and security
» NOT and NAND are both homomorphic (and NAND is functionally complete)

» NOT(A)=1-A

» NAND(A, B)=1-AB

» Besides NAND and NOT, we also implemented optimized versions of AND, OR, and
XOR

Useful Primitives for Machine Learning

» Multiplication and addition allow us to approximate any function by Taylor expansion
(e.g. softmax, sigmoid)

» Binary adders and multipliers can be built from bit-wise operations (e.g. half-adder)

» We can also use Newton’s Method to approximate the n root, which in turn can be
used in the L" norm, an approximation for the max function, used in max pooling.

» ReLU in particular can be highly optimized in this scheme

Ay -Az = Tst 4-bit number

Add/Subtract DONE e e
Multiplication DONE i £ i i £ i i £
Scalar Division DONE Cﬂ%%cﬁ&cﬂﬁ; |2 oo il ch&c“:%ch v
RelLU DONE 1 | | i
Max Pool DONE N N))

Example Optimization - ReLU

» ReLU(x) = %'xl requires the very costly operations of addition and division. However,
our optimized version of ReLU(x) requires only one efficient operation to be performed
and is even more efficient than just |x|

» We are using a ones-complement scheme. Let x4, x5, ..., x,, be the bits of x, with x;
being the sign bit. Let ry, 1y, ..., 13, be the bits of the result.

x+|x|

» Slow RelLU: as described above,

» FastReLU:7r; = OR(xy,x;) forall1 <i<n

Fast ReLU | Slow RelLU Abs Add Mult
Time (S) 0.206 53.389 0.495 1.509 51.384
Time (relative
to Fast ReLU) 1.0 259.2 2.4 7.3 249.4

Limitations of Bit List Operations

» “Traditional division” is non-trivial because long division requires a check of whether
the divisor is larger than the dividend at each step.

» We can still do “division” by representing each number by a numerator and a denominator)

o : L1005 _ (10)(2) _ 20
and multiplying by the reciprocal: L2 Do) s

» We cannot account for any overflows because we have no information about the cipher’s bits.
Especially significant because fixed-point arithmetic is used.

» Computations on bit lists with more precision are significantly slower than those with
less precision

Putting It Together

Inference With Neural Networks

User

Network

Training vs Inference

» Training
» Networks owned by other parties use unencrypted weights
» Trained with unencrypted values

» Inference
» Done with encrypted values

» Not a problem if encryption makes the network slightly slower

Need of Changes

» Tempting to just encrypt everything with the FHE scheme
» The network would run too slowly, even for inference

» Make some optimizations to use less bits

» Less bits means faster computations

Representation of Values

» N-bit precision encrypted integer tensors accompanied by full-precision scalars

o 9-13 5 2]
npu
| 1 11 7 -6
» Fitto[—1,1]
> Scalarofz,\,_ll_1 05743 3 '7 '4 1

» Weights _6 0O 7]_O_

» Multiple previous work on weight compression [1, 2]

» We use a combination of their methods

[1] Leng, Duo, Li, Zhu, Jin 2017
[2] Meng, Gu, Zhang, Wu 2017

Quantization of ResNet

Number of Bits Top-1 Accuracy
2 72.6%

3 72.99%

4 73.64%

5 73.71%

no quantization 74.28%

Running ResNet-18 (He et al. 2015) on CIFAR-100

» Little loss in accuracy

» Not the major source of imprecision

Training Low Precision Weights

» EXxisting weights cannot just be approximated
» Have to be slightly altered through additional training
» Still retains high accuracy [1]

» Maintain real-value weights
» Calculate low-precision weights before training

» Run the network on LP weights but only update full-precision weights

» Allows us to both adapt and train networks from scratch

[1] Zhou, Yao, Guo, Xu, Chen 2017

Operating on Low Precision Values

Addition

» First divide integer values by 2

» Multiply their scalar values by 2 so overall value stays the same
» Scale the integer values with the smaller scalar value to match that of the other tensor

» Simply add the encrypted values using the FHE scheme

Secure Scaling

>

>

>

>

When sending values through the network, we encounter problems with overflow

Solution: secure-scale operation

We are able to scale potentially overflowing values into required bounds

Able to perform without data leaks

» Compute running maximums for the integer values during training

Computing RelLU

» ReLU can be done efficiently under the FHE scheme

» Networks with ReLLU tend to have large negative values
» Leads to unused bits after ReLLU operation

» Perfect time to use a secure-scale operation

Matrix Multiplication

» Uses standard matrix multiplication

» Face issue of overflow

» Each element of the result is the cross product of two potentially very large vectors

» Scaling would have to be done before the multiplication

» Just secure-scaling the input creates too much loss of precision and would require more
bits

» Leads us to do a “two-phase” cross product with intermediate scaling
» Compute by blocks and then blocks are combined

» Scaling before and after combination of blocks

Everything Is Ready

» Representation of values that allows fast computations
» Weights can be compressed without loss in accuracy

» We can avoid overflow while operating on LP values

Implementation

» Tested on “inaccessible” values

» N-bit integer values
» Act like FHE values

Q~(mMmM3>TruvrSr~= &
ONAd®mMITYNE N o
nv‘a._n_,:u;srvnraoal

N~ ™MLt
O~ TUSes N\
Q=M F Ve~
O~ mMAP v\ =6
QAN OG0 -2
DA I>rwd
ONNOTwvY o
ONHIYMITVIL ~W
NP TwI w0
SIS -0
S=AMAINID N
Q=M PV P
O~NXMIT 998 X

» Tested on MNIST dataset

q 1

799949339404

» 28 x 28 pixel handwritten digits

\

Network Architecture

» Three fully connected layers

» Two ReLU Layers

» 8 bits of precision

Input (784)

784 x 500 FC

500 x 256 FC

256 x 10 FC

Output (10)

Results

Net Type Top-1 Accuracy
MNIST Net 98.19%
8-bit MNIST Net 98.00%

» Adapting to be able to use encrypted values results in only a 0.19% loss in accuracy

Conclusion

» We have made a secure FHE scheme that can do all the needed operations

» We have built a working library for the FHE scheme

» Network weights can be quantized without much loss in accuracy

» Existing networks can be adapted to this quantized scheme with slight modifications

» Showed networks can perform inference on encrypted data with minimal loss of
accuracy

Future Work

» Time and memory optimizations

» Experimenting with one’s vs two’s complement

» Synthesizing optimized FHE for any operation

» Further decreasing the number of bits needed to retain high accuracy

» Adapting all types of neural network layers to run with low precision

Acknowledgements

» Our Mentor, William Moses
» Our Parents

» The PRIMES Program

Supplemental Slides

Enter Gentry’s Scheme! [source]

» Gentry solves the problem of cipher multiplication by using a set of constructions and
functions which bounds the error growth to N+1 per operation, where N is the
dimension of the matrix. Not fully homomorphic, but much better than the previous

bound.

Limitations of Gentry’s Scheme

» This scheme requires that u € {0, 1}

» The error still grows, just not nearly as much as before. So the modulus must be very
large to account for this.

» It was provedlsourcel that we can build up any function by stringing together a number of
NAND gates, so all we need is a homomorphic NAND.

Enter Binary Logic!

» If we have two one-bit ciphers A and B, then NAND(A, B) =1 - AB. Since 1 is
represented by the identity matrix, and addition, subtraction, and multiplication are
homomorphic, NAND is also homomorphic. Equivalently, Gentry’s scheme is fully

homomorphic.

» Unfortunately, stringing together NAND gates always works in theory, but in practice,
can be very inefficient and slow...

Lattice-Based Cryptography i1s Somewhat
Homomorphic

» Somewhat Homomorphic Encryption: similar to FHE but there is a small error which
Increases with each operation.

» Eigenvalues add and multiply corresponding to matrix additions and multiplications,
very useful for homomorphic encryption!

» Since the plaintext and secret key are not exact, they are only somewhat homomorphic
instead of fully homomorphic.

» Multiplicative: B"Y where B is the maximum coefficient of the ciphertexts (aka some large
prime modulus) and L is the multiplicative depth of the circuit. Clearly this is not sustainable!

Operations on Bit Lists

» Addition: addition with carry can be done using half-adders and full-adders

Ag -Az = st 4-bit number

MSB Bo- Bs = 2nd 4-bit number LSB

- - A Bl B In 1 |n|2 |n|3 InI4

1 l 1 1 l 1 1 l . ; r— Complement
. [~ B A B A B A B LN
O‘:_C“AELC“‘%C“AE:; C""‘CI_C“"AZIJ:.-: C""“C_C""AELC""‘_U o et |

SUM SUM SUM SUM el
l l’ l l - Vs A Qut 1 QOut 2 Out 3 QOut 4
s S s S

» Multiplication: can be done using repeated additions and bit-shifts (bit-shifts do not
compromise any information)

» Negation: ones-complement still works. As mentioned, NOT(A) =1-As
homomorphic.

Low Precision Weights

Given weights W € R™ and N bits, we want

Let,

Then,

(IT denotes the euclidean projection operator)

min||W — wG||3
w,G

st. G €{0,+1,42,..., +(2N " 1-1)ym

max|x|
o 1= XEW
07 2N-1 1
w
Gryr = —
Wi
{0,£1,%2,..,.22N ~1 -1)}
o W7 Gerq
k+1 = 7 -
Gier1Grst

Matrix Addition

Given matrices A and B, and scalars o and 5 s.t. « > f,

Y =2«

c- -2

aA+ B -vyC

Note we divide by 2 to avoid overflow

“Scaling” Layers

» Meant to ensure bits are not being wasted
» Use unencrypted low precision values during training

When it receives inputs a and A while training,
Ma = maxlx]
M=pM+(1—-p)Mg (O<p<1

. aMp
@=5N-1_q

[

Inference With Scaling Layers

» LP values are encrypted

When it recieves inputs a and A during inference,

aM
T 2N

[N

a .

Two-Phase Cross Product

Given vectors 4,B € {0,+1,+2,...,£(2Y 71 — 1)}* and scalars « and f:

A B
Cr = [,/ZN—1 — 1] [,/ZN—1 — 1]

Yr=af(V71 - 1)
Now we need to be able to sum the elements of yCr.

This is done in two phases

Phase One

For simplicity, assume n is a perfect square

During training,

Mp, := max z C -
BL™ h<icym _ Ri+j+ivn

My =pM; + (1 —p)Mp; (0<p<1)

Training: Inference:

_ YrRMp, _ YrRM;
YA T ZN_1_1 YA ._ ZN_l_l

o[{5

Phase One Continued

Calculate Cg € {0, 41,42, ..., +(2¥ =1 — 1)}V™ defined as

CBi= Z CA1+j+i\/ﬁ
0<j<yVn

YB = Ya

Phase Two

During training,
Mp, = z Cp
M, =pM,+(1—p)Mp, (0<p<1)
Training: Inference:
_ _YsMga __YsM;
N1] Y TN

	Secure Image Classification with Lattice-Based Fully Homomorphic Encryption
	Scenario
	How do we perform computations without giving away the data?
	Solution
	Introducing Fully Homomorphic Encryption (FHE)[1]
	Uses of FHE
	Road Map
	Neural Networks�
	Amazing Achievements
	Neural Networks
	The Basic Neuron
	Building and Using Networks (On Images)
	Required Operations
	Who Needs Trust?�
	Lattice-Based Cryptography: a Somewhat Homomorphic Scheme [1]
	Constraints of FHE
	Useful Primitives for Machine Learning
	Example Optimization - ReLU
	Limitations of Bit List Operations
	Putting It Together�
	Inference With Neural Networks
	Training vs Inference
	Need of Changes
	Representation of Values
	Quantization of ResNet
	Training Low Precision Weights
	Operating on Low Precision Values�
	Addition
	Secure Scaling
	Computing ReLU
	Matrix Multiplication
	Everything is Ready
	Implementation
	Network Architecture
	Results
	Conclusion
	Future Work
	Acknowledgements
	Supplemental Slides
	Enter Gentry’s Scheme! [source]
	Limitations of Gentry’s Scheme
	Enter Binary Logic!
	Lattice-Based Cryptography is Somewhat Homomorphic
	Operations on Bit Lists
	Low Precision Weights
	Matrix Addition
	“Scaling” Layers
	Inference With Scaling Layers
	Two-Phase Cross Product
	Phase One
	Phase One Continued
	Phase Two

