Secure Image Classification with Lattice-Based Fully Homomorphic Encryption

Sanath Govindarajan, Walden Yan

Mentor: William Moses

Scenario

You are a doctor who has a patient's x-ray images. You want to send it to a third-party service which specializes in detecting bone defects. But you cannot legally send the images without compromising the privacy of the patient, due to HIPAA / other privacy laws. Is there no hope?

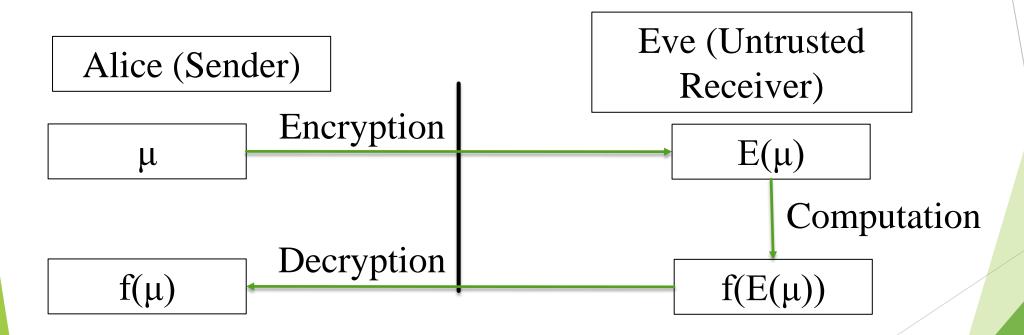
How do we perform computations without giving away the data?

Solution

We created a fully homomorphic encryption scheme that is capable of performing the operations required by a neural network. Then, we created methods of adapting and training neural networks to run efficiently with this encryption scheme, with minimal loss to accuracy.

Introducing Fully Homomorphic Encryption (FHE)[1]

Supports arbitrary computation on encrypted data



Uses of FHE

- ▶ Using FHE, we can send off our tasks to someone with a more powerful computer or a better algorithm, without worrying about data leaks.
 - Email filtering
 - ▶ Medical applications, e.g. image classification
 - Defense
 - Finance

Road Map

- We need to be able to:
 - Encrypt data
 - ▶ Homomorphically compute on the encrypted data
 - ▶ Run inference on the encrypted data using a neural network

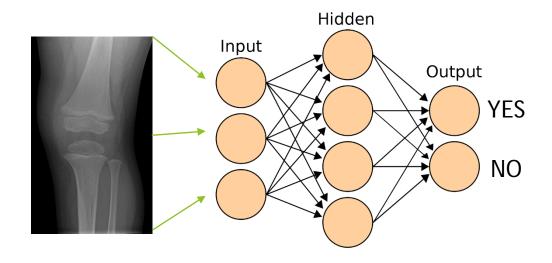
Neural Networks

Amazing Achievements

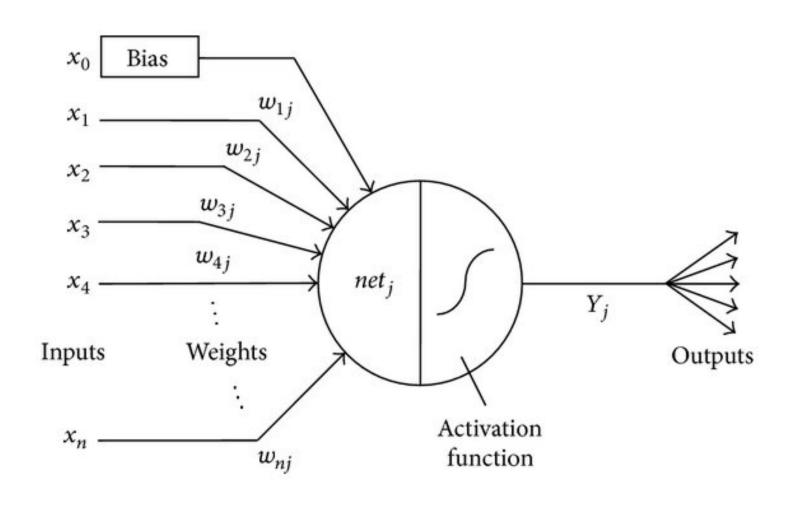
- Translation between languages [1]
- ▶ WaveNet: speech generation [2, 3]
- Lip reading [4]
- Visual reasoning [5]
 - [1] Wu, Schuster, Chen, Le, Norouzi 2016
 - [2] van den Oord, Kalchbrenner, Kavukcuoglu 2016
 - [3] van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu 2016
 - [4] Chung, Senior, Vinyals, Zisserman 2016
 - [5] Santoro, Raposo, Barrett, Malinowski, Pascanu, Battaglia, Lillicrap 2017

Neural Networks

- Mimic the brain
- ► Layers of artificial neurons
- Input Layer
 - ► Receives data for user
- Output Layer
 - ▶ Gives specific information about input
- Hidden Layers
 - ► Computations needed to transform input into output



The Basic Neuron



Building and Using Networks (On Images)

Training

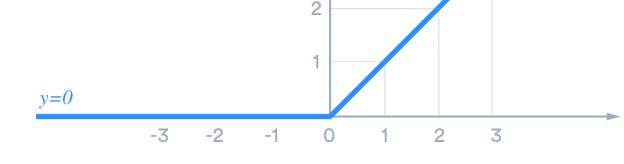
- Requires a huge dataset of training images
- ▶ Mathematically modify weights to fit training examples
- Takes up a lot of time

Inference

- Feed brand new images with the correct output unknown
- ▶ Returns what the network believes the images to be
- ► Much faster than training

Required Operations

- Matrix (Tensor) addition, subtraction and multiplication
 - Division by constants
- Activation functions
 - ► ReLU
- Pooling
 - Max Pooling



- ► Generally third parties have to do these computations
 - ▶ Services cannot always be trusted to not steal information

Who Needs Trust?

Lattice-Based Cryptography: a Somewhat Homomorphic Scheme [1]

Lattice-based cryptography is based on the Learning with Errors problem

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix} \times \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 3 \times u \\ 3 \times v \\ 3 \times w \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Cipher

Secret Key

Plaintext $(\mu) = 3$

Error vector with small coefficients

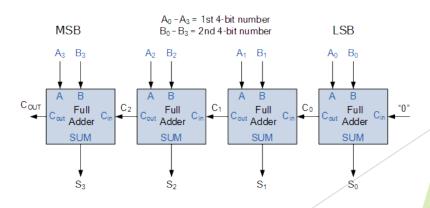
Constraints of FHE

- ► Gentry's Scheme makes multiplication and addition homomorphic in practice, but with the restriction that $\mu \in \{0, 1\}$
 - ▶ Use list of encrypted binary digits to represent larger numbers
 - ▶ Use fixed-point numbers instead of floating-point numbers for practicality and security
- ▶ NOT and NAND are both homomorphic (and NAND is functionally complete)
 - ightharpoonup NOT(A) = 1 A
 - \triangleright NAND(A, B) = 1 AB
- ▶ Besides NAND and NOT, we also implemented optimized versions of AND, OR, and XOR

Useful Primitives for Machine Learning

- Multiplication and addition allow us to approximate any function by Taylor expansion (e.g. softmax, sigmoid)
- ▶ Binary adders and multipliers can be built from bit-wise operations (e.g. half-adder)
- We can also use Newton's Method to approximate the nth root, which in turn can be used in the Lⁿ norm, an approximation for the max function, used in max pooling.
- ▶ ReLU in particular can be highly optimized in this scheme

Add/Subtract	DONE
Multiplication	DONE
Scalar Division	DONE
ReLU	DONE
Max Pool	DONE



Example Optimization - ReLU

- ReLU(x) = $\frac{x+|x|}{2}$ requires the very costly operations of addition and division. However, our optimized version of ReLU(x) requires only one efficient operation to be performed and is even more efficient than just |x|
- We are using a ones-complement scheme. Let $x_1, x_2, ..., x_n$ be the bits of x, with x_1 being the sign bit. Let $r_1, r_2, ..., r_n$ be the bits of the result.
 - ► Slow ReLU: as described above, $\frac{x+|x|}{2}$
 - Fast ReLU: $r_i = OR(x_1, x_i)$ for all $1 \le i \le n$

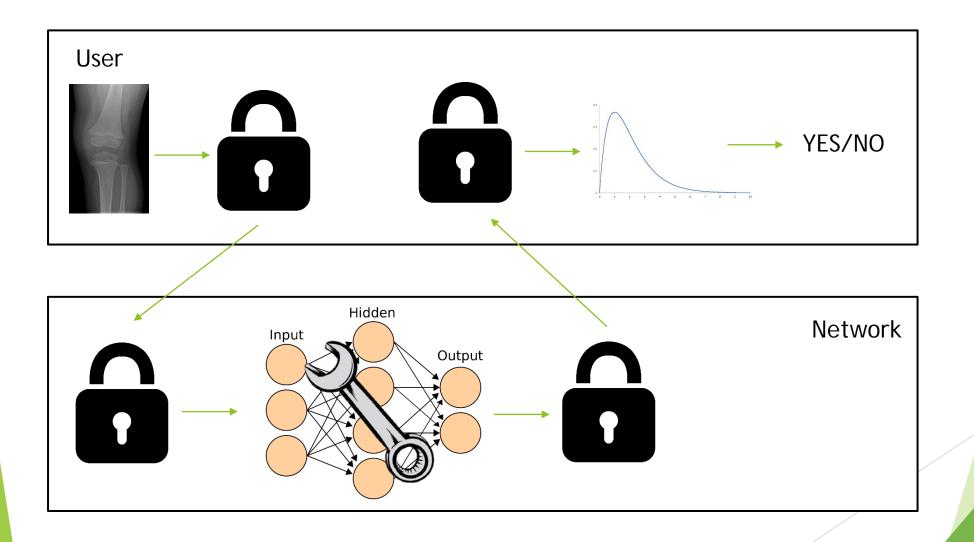
	Fast ReLU	Slow ReLU	Abs	Add	Mult
Time (s)	0.206	53.389	0.495	1.509	51.384
Time (relative to Fast ReLU)	1.0	259.2	2.4	7.3	249.4

Limitations of Bit List Operations

- Traditional division" is non-trivial because long division requires a check of whether the divisor is larger than the dividend at each step.
 - We can still do "division" by representing each number by a numerator and a denominator) and multiplying by the reciprocal: $\frac{10}{1} \div \frac{5}{2} = \frac{(10)(2)}{(1)(5)} = \frac{20}{5}$
 - ▶ We cannot account for any overflows because we have no information about the cipher's bits. Especially significant because fixed-point arithmetic is used.
- Computations on bit lists with more precision are significantly slower than those with less precision

Putting It Together

Inference With Neural Networks



Training vs Inference

- Training
 - ▶ Networks owned by other parties use unencrypted weights
 - ► Trained with unencrypted values
- Inference
 - ▶ Done with encrypted values
 - Not a problem if encryption makes the network slightly slower

Need of Changes

- ► Tempting to just encrypt everything with the FHE scheme
- ► The network would run too slowly, even for inference
- Make some optimizations to use less bits
 - ▶ Less bits means faster computations

Representation of Values

- ▶ *N*-bit precision encrypted integer tensors accompanied by full-precision scalars
- Input
 - Fit to [-1, 1]
 - $\blacktriangleright \text{ Scalar of } \frac{1}{2^{N-1}-1}$
- Weights
 - ▶ Multiple previous work on weight compression [1, 2]
 - ▶ We use a combination of their methods

$$0.5743 \begin{bmatrix} 9 & -13 & 5 & 2 \\ 1 & 11 & 7 & -6 \\ 3 & -7 & -4 & 1 \\ 6 & 0 & 7 & 10 \end{bmatrix}$$

^[1] Leng, Duo, Li, Zhu, Jin 2017

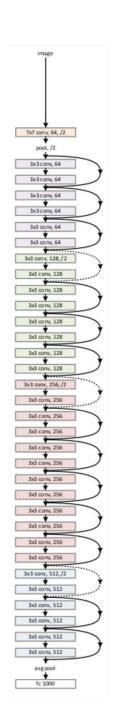
^[2] Meng, Gu, Zhang, Wu 2017

Quantization of ResNet

Number of Bits	Top-1 Accuracy
2	72.6%
3	72.99%
4	73.64%
5	73.71%
no quantization	74.28%

Running ResNet-18 (He et al. 2015) on CIFAR-100

- Little loss in accuracy
- Not the major source of imprecision



Training Low Precision Weights

- Existing weights cannot just be approximated
 - ▶ Have to be slightly altered through additional training
 - ► Still retains high accuracy [1]
- Maintain real-value weights
- Calculate low-precision weights before training
- ▶ Run the network on LP weights but only update full-precision weights
- Allows us to both adapt and train networks from scratch

Operating on Low Precision Values

Addition

- First divide integer values by 2
- Multiply their scalar values by 2 so overall value stays the same
- ▶ Scale the integer values with the smaller scalar value to match that of the other tensor
- ▶ Simply add the encrypted values using the FHE scheme

Secure Scaling

- ▶ When sending values through the network, we encounter problems with overflow
- ► Solution: secure-scale operation
- ▶ We are able to scale potentially overflowing values into required bounds
- Able to perform without data leaks
 - ▶ Compute running maximums for the integer values during training

Computing ReLU

- ▶ ReLU can be done efficiently under the FHE scheme
- Networks with ReLU tend to have large negative values
- ▶ Leads to unused bits after ReLU operation
- ▶ Perfect time to use a secure-scale operation

Matrix Multiplication

- Uses standard matrix multiplication
- ► Face issue of overflow
 - ▶ Each element of the result is the cross product of two potentially very large vectors
- Scaling would have to be done before the multiplication
- ▶ Just secure-scaling the input creates too much loss of precision and would require more bits
- Leads us to do a "two-phase" cross product with intermediate scaling
 - ► Compute by blocks and then blocks are combined
 - Scaling before and after combination of blocks

Everything is Ready

- ▶ Representation of values that allows fast computations
- Weights can be compressed without loss in accuracy
- We can avoid overflow while operating on LP values

Implementation

- ► Tested on "inaccessible" values
 - ► *N*-bit integer values
 - ► Act like FHE values
- ► Tested on MNIST dataset
 - ▶ 28 x 28 pixel handwritten digits

Network Architecture

- ► Three fully connected layers
- Two ReLU Layers
- > 8 bits of precision

Results

Net Type	Top-1 Accuracy
MNIST Net	98.19%
8-bit MNIST Net	98.00%

Adapting to be able to use encrypted values results in only a 0.19% loss in accuracy

Conclusion

- ▶ We have made a secure FHE scheme that can do all the needed operations
- ▶ We have built a working library for the FHE scheme
- Network weights can be quantized without much loss in accuracy
- Existing networks can be adapted to this quantized scheme with slight modifications
- Showed networks can perform inference on encrypted data with minimal loss of accuracy

Future Work

- Time and memory optimizations
- Experimenting with one's vs two's complement
- Synthesizing optimized FHE for any operation
- ► Further decreasing the number of bits needed to retain high accuracy
- Adapting all types of neural network layers to run with low precision

Acknowledgements

- Our Mentor, William Moses
- Our Parents
- ► The PRIMES Program

Supplemental Slides

Enter Gentry's Scheme! [source]

Gentry solves the problem of cipher multiplication by using a set of constructions and functions which bounds the error growth to N+1 per operation, where N is the dimension of the matrix. Not fully homomorphic, but much better than the previous bound.

Limitations of Gentry's Scheme

- This scheme requires that $\mu \in \{0, 1\}$
- The error still grows, just not nearly as much as before. So the modulus must be very large to account for this.
- It was proved^[source] that we can build up any function by stringing together a number of NAND gates, so all we need is a homomorphic NAND.

Enter Binary Logic!

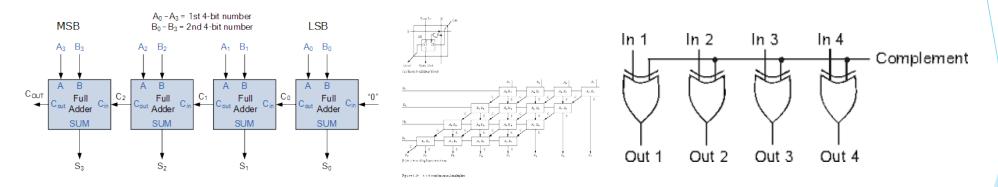
- If we have two one-bit ciphers A and B, then NAND(A, B) = 1 AB. Since 1 is represented by the identity matrix, and addition, subtraction, and multiplication are homomorphic, NAND is also homomorphic. Equivalently, Gentry's scheme is fully homomorphic.
- Unfortunately, stringing together NAND gates always works in theory, but in practice, can be very inefficient and slow...

Lattice-Based Cryptography is Somewhat Homomorphic

- Somewhat Homomorphic Encryption: similar to FHE but there is a small error which increases with each operation.
- Eigenvalues add and multiply corresponding to matrix additions and multiplications, very useful for homomorphic encryption!
- Since the plaintext and secret key are not exact, they are only *somewhat homomorphic* instead of *fully homomorphic*.
 - Multiplicative: B^(2^L) where B is the maximum coefficient of the ciphertexts (aka some large prime modulus) and L is the multiplicative depth of the circuit. Clearly this is not sustainable!

Operations on Bit Lists

Addition: addition with carry can be done using half-adders and full-adders



- Multiplication: can be done using repeated additions and bit-shifts (bit-shifts do not compromise any information)
- Negation: ones-complement still works. As mentioned, NOT(A) = 1 A is homomorphic.

Low Precision Weights

Given weights $W \in \mathbb{R}^m$ and N bits, we want

 $\min_{\omega,G} \|W - \omega G\|_2^2$

s.t. $G \in \{0, \pm 1, \pm 2, \dots, \pm (2^{N-1}-1)\}^m$

m

 $\omega_0 \coloneqq \frac{\max_{x \in W} |x|}{2^{N-1} - 1}$

Then,

Let,

 $G_{k+1} := \prod_{\{0,\pm 1,\pm 2,\dots,\pm (2^{N-1}-1)\}} \frac{W}{\omega_k}$

$$\omega_{k+1} \coloneqq \frac{W^T G_{k+1}}{G_{k+1}^T G_{k+1}}$$

 $(\prod denotes the euclidean projection operator)$

Matrix Addition

Given matrices A and B, and scalars α and β s.t. $\alpha > \beta$,

$$\gamma = 2\alpha$$

$$C = \left[\frac{A}{2}\right] + \left[\frac{\beta}{\alpha} \left[\frac{B}{2}\right]\right]$$

$$\alpha A + \beta B \rightarrow \gamma C$$

Note we divide by 2 to avoid overflow

"Scaling" Layers

- Meant to ensure bits are not being wasted
- Use unencrypted low precision values during training

When it receives inputs α and A while training,

$$M_{B} \coloneqq \max_{x \in A} |x|$$

$$M \coloneqq \rho M + (1 - \rho) M_{B} \quad (0 < \rho < 1)$$

$$\alpha \coloneqq \frac{\alpha M_{B}}{2^{N-1} - 1}$$

$$A \coloneqq \left[\left(\frac{2^{N-1} - 1}{M_{B}} \right) A \right]$$

Inference With Scaling Layers

► LP values are encrypted

When it recieves inputs α and A during inference,

$$\alpha \coloneqq \frac{\alpha M}{2^{N-1} - 1}$$

$$A \coloneqq \left[\left(\frac{2^{N-1} - 1}{M} \right) A \right]$$

Two-Phase Cross Product

Given vectors $A, B \in \{0, \pm 1, \pm 2, ..., \pm (2^{N-1} - 1)\}^n$ and scalars α and β :

$$C_R \coloneqq \left[\frac{A}{\sqrt{2^{N-1}-1}}\right] \left[\frac{B}{\sqrt{2^{N-1}-1}}\right]$$

$$\gamma_R \coloneqq \alpha \beta (2^{N-1} - 1)$$

Now we need to be able to sum the elements of $\gamma_R C_R$.

This is done in two phases

Phase One

For simplicity, assume n is a perfect square

During training,

$$M_{B1} \coloneqq \max_{0 \le i < \sqrt{n}} \sum_{0 \le j < \sqrt{n}} C_{R_{1}+j+i\sqrt{n}}$$

$$M_1 := \rho M_1 + (1 - \rho) M_{B1} \quad (0 < \rho < 1)$$

Training:

$$\gamma_A \coloneqq rac{\gamma_R M_{B1}}{2^{N-1} - 1}$$
 $C_A \coloneqq \left[\left(rac{2^{N-1} - 1}{M_{B1}} \right) C_R \right]$

$$C_A \coloneqq \left[\left(\frac{2^{N-1} - 1}{M_1} \right) C_R \right]$$

 $\gamma_A \coloneqq \frac{\gamma_R M_1}{2^{N-1} - 1}$

Phase One Continued

Calculate $C_B \in \{0, \pm 1, \pm 2, ..., \pm (2^{N-1} - 1)\}^{\sqrt{n}}$ defined as

$$C_{B_i} = \sum_{0 \le j < \sqrt{n}} C_{A_{1+j+i\sqrt{n}}}$$

$$\gamma_B := \gamma_A$$

Phase Two

During training,

$$M_{B2} \coloneqq \sum C_B$$

$$M_2 \coloneqq \rho M_2 + (1 - \rho) M_{B2} \quad (0 < \rho < 1)$$

Training:

$$\gamma \coloneqq \frac{\gamma_B M_{B2}}{2^{N-1} - 1}$$

$$C \coloneqq \sum \left[\left(\frac{2^{N-1} - 1}{M_{B2}} \right) C_B \right]$$

Inference:

$$\gamma := \frac{\gamma_B M_2}{2^{N-1} - 1}$$

$$C \coloneqq \left[\left(\frac{2^{N-1} - 1}{M_2} \right) C_B \right]$$