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Scenario 

You are a doctor who has a patient’s x-ray images. You 
want to send it to a third-party service which specializes in 
detecting bone defects. But you cannot legally send the 
images without compromising the privacy of the patient, 
due to HIPAA / other privacy laws. Is there no hope? 



How do we perform computations 
without giving away the data? 



We created a fully homomorphic encryption scheme that is 
capable of performing the operations required by a neural 
network. Then, we created methods of adapting and 
training neural networks to run efficiently with this 
encryption scheme, with minimal loss to accuracy.  

Solution 



Introducing Fully Homomorphic 
Encryption (FHE)[1] 
 Supports arbitrary computation on encrypted data 

Alice (Sender) Eve (Untrusted 
Receiver) 

μ E(μ) 
Encryption 

f(E(μ)) 

Computation 

f(μ) 
Decryption 

[1] Acar, Abbas, Aksu, Hidayet, Uluagac, Selcuk, Conti, Mauro 2017 



Uses of FHE 

 Using FHE, we can send off our tasks to someone with a more powerful computer or a 
better algorithm, without worrying about data leaks. 
 Email filtering 

 Medical applications, e.g. image classification 

 Defense 

 Finance 



Road Map 

 We need to be able to: 
 Encrypt data 

 Homomorphically compute on the encrypted data 

 Run inference on the encrypted data using a neural network 



Neural Networks 
 



Amazing Achievements 

 Translation between languages [1] 

 

 WaveNet: speech generation [2, 3] 

 

 Lip reading [4] 

 

 Visual reasoning [5] 

[1] Wu, Schuster, Chen, Le, Norouzi 2016 
[2] van den Oord, Kalchbrenner, Kavukcuoglu 2016 
[3] van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu 2016 
[4] Chung, Senior, Vinyals, Zisserman 2016 
[5] Santoro, Raposo, Barrett, Malinowski, Pascanu, Battaglia, Lillicrap 2017 



Neural Networks 

 Mimic the brain 

 Layers of artificial neurons 

 

 Input Layer 
 Receives data for user 

 Output Layer 
 Gives specific information about input 

 Hidden Layers 
 Computations needed to transform input into output 

 

YES 

NO 



The Basic Neuron 



Building and Using Networks (On Images) 

 Training  
 Requires a huge dataset of training images 

 Mathematically modify weights to fit training examples 

 Takes up a lot of time 

 

 Inference 
 Feed brand new images with the correct output unknown 

 Returns what the network believes the images to be 

 Much faster than training 



Required Operations 

 Matrix (Tensor) addition, subtraction and multiplication 
 Division by constants 

 

 Activation functions 
 ReLU 

 

 Pooling 
 Max Pooling 

 

 Generally third parties have to do these computations 
 Services cannot always be trusted to not steal information 

 
 

 

 



Who Needs Trust? 
 



Lattice-Based Cryptography: a Somewhat 
Homomorphic Scheme [1] 

 

 

Secret Key Cipher Plaintext (μ) = 3 Error vector with 
small coefficients 

[1] Gentry, Craig, Sahai, Amit, Waters, Brent 2013 

Lattice-based cryptography is based on the Learning with Errors problem 



Constraints of FHE 

 Gentry’s Scheme makes multiplication and addition homomorphic in practice, but with 
the restriction that μ ϵ {0, 1} 
 Use list of encrypted binary digits to represent larger numbers 

 Use fixed-point numbers instead of floating-point numbers for practicality and security 

 NOT and NAND are both homomorphic (and NAND is functionally complete) 
 NOT(A) = 1 – A 

 NAND(A, B) = 1 – AB 

 Besides NAND and NOT, we also implemented optimized versions of AND, OR, and 
XOR 



Useful Primitives for Machine Learning 

 Multiplication and addition allow us to approximate any function by Taylor expansion 
(e.g. softmax, sigmoid) 

 Binary adders and multipliers can be built from bit-wise operations (e.g. half-adder) 

 We can also use Newton’s Method to approximate the nth root, which in turn can be 
used in the Ln norm, an approximation for the max function, used in max pooling. 

 ReLU in particular can be highly optimized in this scheme 

Add/Subtract DONE 
Multiplication DONE 
Scalar Division DONE 
ReLU DONE 
Max Pool DONE 



Example Optimization - ReLU 

 ReLU(𝑥𝑥) = 𝑥𝑥+ 𝑥𝑥
2

 requires the very costly operations of addition and division. However, 
our optimized version of ReLU(𝑥𝑥) requires only one efficient operation to be performed 
and is even more efficient than just 𝑥𝑥  

 We are using a ones-complement scheme. Let 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 be the bits of 𝑥𝑥, with 𝑥𝑥1 
being the sign bit. Let 𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑛𝑛 be the bits of the result. 

 Slow ReLU: as described above, 𝑥𝑥+ 𝑥𝑥
2

 

 Fast ReLU: 𝑟𝑟𝑖𝑖 = OR(𝑥𝑥1,𝑥𝑥𝑖𝑖) for all 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 

Fast ReLU Slow ReLU Abs Add Mult 
Time (s) 0.206 53.389 0.495 1.509 51.384 

Time (relative 
to Fast ReLU) 1.0 259.2 2.4 7.3 249.4 



Limitations of Bit List Operations 

 “Traditional division” is non-trivial because long division requires a check of whether 
the divisor is larger than the dividend at each step. 
 We can still do “division” by representing each number by a numerator and a denominator) 

and multiplying by the reciprocal: 10
1

÷ 5
2

= (10)(2)
(1)(5)

= 20
5

 

 We cannot account for any overflows because we have no information about the cipher’s bits. 
Especially significant because fixed-point arithmetic is used. 

 

 Computations on bit lists with more precision are significantly slower than those with 
less precision 



Putting It Together 
 



Inference With Neural Networks 

User 

Network 

YES/NO 



Training vs Inference 

 Training 
 Networks owned by other parties use unencrypted weights 

 Trained with unencrypted values 

 Inference 
 Done with encrypted values 

 Not a problem if encryption makes the network slightly slower 

 



Need of Changes 

 Tempting to just encrypt everything with the FHE scheme 

 

 The network would run too slowly, even for inference 

 

 Make some optimizations to use less bits 
 Less bits means faster computations 



Representation of Values 

 𝑁𝑁-bit precision encrypted integer tensors accompanied by full-precision scalars 

 

 Input 
 Fit to −1, 1  

 Scalar of 1
2𝑁𝑁−1−1

 

 Weights 
 Multiple previous work on weight compression [1, 2] 

 We use a combination of their methods 

 

 

 

0.5743 

- 

- 
- 

- 

[1] Leng, Duo, Li, Zhu, Jin 2017 
[2] Meng, Gu, Zhang, Wu 2017 



Quantization of ResNet 

Number of Bits Top-1 Accuracy 
2 72.6% 
3 72.99% 
4 73.64% 
5 73.71% 
no quantization 74.28% 

Running ResNet-18 (He et al. 2015) on CIFAR-100 

 

 Little loss in accuracy 

 Not the major source of imprecision 



Training Low Precision Weights 

 Existing weights cannot just be approximated 
 Have to be slightly altered through additional training 

 Still retains high accuracy [1] 

 

 Maintain real-value weights 

 Calculate low-precision weights before training 

 Run the network on LP weights but only update full-precision weights 

 

 Allows us to both adapt and train networks from scratch 

[1] Zhou, Yao, Guo, Xu, Chen 2017 



Operating on Low Precision Values 
 



Addition 

 First divide integer values by 2 

 Multiply their scalar values by 2 so overall value stays the same 

 

 Scale the integer values with the smaller scalar value to match that of the other tensor 

 

 Simply add the encrypted values using the FHE scheme 
 



Secure Scaling 

 When sending values through the network, we encounter problems with overflow 

 

 Solution: secure-scale operation 
 

 We are able to scale potentially overflowing values into required bounds 

 

 Able to perform without data leaks 
 Compute running maximums for the integer values during training 



Computing ReLU 

 ReLU can be done efficiently under the FHE scheme 

 

 Networks with ReLU tend to have large negative values 

 Leads to unused bits after ReLU operation 

 Perfect time to use a secure-scale operation 



Matrix Multiplication 

 Uses standard matrix multiplication 
 
 Face issue of overflow 

 Each element of the result is the cross product of two potentially very large vectors 

 

 Scaling would have to be done before the multiplication 
 Just secure-scaling the input creates too much loss of precision and would require more 

bits 
 Leads us to do a “two-phase” cross product with intermediate scaling 

 Compute by blocks and then blocks are combined 

 Scaling before and after combination of blocks 



Everything is Ready 

 Representation of values that allows fast computations 

 

 Weights can be compressed without loss in accuracy 

 

 We can avoid overflow while operating on LP values 



Implementation 

 Tested on “inaccessible” values 
 𝑁𝑁-bit integer values 

 Act like FHE values 

 

 Tested on MNIST dataset 
 28 x 28 pixel handwritten digits 



Network Architecture 

784 x 500 FC 

Input (784) 

ReLU 

500 x 256 FC 

ReLU 

256 x 10 FC 

Output (10) 

 Three fully connected layers 
 

 Two ReLU Layers 

 

 8 bits of precision 



Results 

Net Type Top-1 Accuracy 
MNIST Net 98.19% 
8-bit MNIST Net 98.00% 

 Adapting to be able to use encrypted values results in only a 0.19% loss in accuracy 



Conclusion 

 We have made a secure FHE scheme that can do all the needed operations 

 We have built a working library for the FHE scheme 

 

 Network weights can be quantized without much loss in accuracy 

 Existing networks can be adapted to this quantized scheme with slight modifications 

 

 Showed networks can perform inference on encrypted data with minimal loss of 
accuracy 



Future Work 

 Time and memory optimizations 

 

 Experimenting with one’s vs two’s complement 

 

 Synthesizing optimized FHE for any operation 

 

 Further decreasing the number of bits needed to retain high accuracy 

 

 Adapting all types of neural network layers to run with low precision 
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Enter Gentry’s Scheme! [source] 

 Gentry solves the problem of cipher multiplication by using a set of constructions and 
functions which bounds the error growth to N+1 per operation, where N is the 
dimension of the matrix. Not fully homomorphic, but much better than the previous 
bound. 



Limitations of Gentry’s Scheme 

 This scheme requires that μ ϵ {0, 1} 

 The error still grows, just not nearly as much as before. So the modulus must be very 
large to account for this. 

 It was proved[source] that we can build up any function by stringing together a number of 
NAND gates, so all we need is a homomorphic NAND. 



Enter Binary Logic! 

 If we have two one-bit ciphers A and B, then NAND(A, B) = 1 – AB. Since 1 is 
represented by the identity matrix, and addition, subtraction, and multiplication are 
homomorphic, NAND is also homomorphic. Equivalently, Gentry’s scheme is fully 
homomorphic. 

 Unfortunately, stringing together NAND gates always works in theory, but in practice, 
can be very inefficient and slow… 



Lattice-Based Cryptography is Somewhat 
Homomorphic 

 Somewhat Homomorphic Encryption: similar to FHE but there is a small error which 
increases with each operation. 

 Eigenvalues add and multiply corresponding to matrix additions and multiplications, 
very useful for homomorphic encryption! 

 Since the plaintext and secret key are not exact, they are only somewhat homomorphic 
instead of fully homomorphic. 
 Multiplicative: B(2^L) where B is the maximum coefficient of the ciphertexts (aka some large 

prime modulus) and L is the multiplicative depth of the circuit. Clearly this is not sustainable! 



Operations on Bit Lists 

 Addition: addition with carry can be done using half-adders and full-adders 

 

 

 

 

 

 Multiplication: can be done using repeated additions and bit-shifts (bit-shifts do not 
compromise any information) 

 Negation: ones-complement still works. As mentioned, NOT(A) = 1 – A is 
homomorphic. 



Low Precision Weights 

Given weights 𝑊𝑊 ∈ ℝ𝑚𝑚 and 𝑁𝑁 bits, we want 

 
min
𝜔𝜔,𝐺𝐺 

𝑊𝑊−𝜔𝜔𝜔𝜔 2
2 

 s.t. 𝐺𝐺 ∈ {0, ±1, ±2, … , ±(2𝑁𝑁−1−1)}𝑚𝑚 

Let, 

𝜔𝜔0 ≔
max
𝑥𝑥∈𝑊𝑊

𝑥𝑥

2𝑁𝑁−1 − 1
                      

Then, 

𝐺𝐺𝑘𝑘+1 ≔ �
𝑊𝑊
𝜔𝜔𝑘𝑘{0,±1,±2,…,±(2𝑁𝑁 −1 −1)}

 

 

𝜔𝜔𝑘𝑘+1 ≔
𝑊𝑊𝑇𝑇𝐺𝐺𝑘𝑘+1
𝐺𝐺𝑘𝑘+1𝑇𝑇 𝐺𝐺𝑘𝑘+1

                          

 

(∏denotes the euclidean projection operator) 

 



Matrix Addition 

Given matrices 𝐴𝐴 and 𝐵𝐵, and scalars 𝛼𝛼 and 𝛽𝛽 s.t. 𝛼𝛼 > 𝛽𝛽, 

 
γ = 2𝛼𝛼 

 

𝐶𝐶 =
𝐴𝐴
2 +

𝛽𝛽
𝛼𝛼
𝐵𝐵
2  

 
𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽→γ𝐶𝐶 

 

Note we divide by 2 to avoid overflow 



“Scaling” Layers 

 Meant to ensure bits are not being wasted 
 Use unencrypted low precision values during training 

 
When it receives inputs 𝛼𝛼 and 𝐴𝐴 while training, 
 

𝑀𝑀𝐵𝐵 ≔ max
𝑥𝑥∈𝐴𝐴

𝑥𝑥  

 
𝑀𝑀 ≔ 𝜌𝜌𝜌𝜌 + 1 − 𝜌𝜌 𝑀𝑀𝐵𝐵      (0 < 𝜌𝜌 < 1) 

 

𝛼𝛼 ≔
𝛼𝛼𝑀𝑀𝐵𝐵

2𝑁𝑁−1 − 1
 

 

𝐴𝐴 ≔
2𝑁𝑁−1 − 1

𝑀𝑀𝐵𝐵
𝐴𝐴  

 



Inference With Scaling Layers 

 LP values are encrypted 

 
When it recieves inputs 𝛼𝛼 and 𝐴𝐴 during inference, 

 
𝛼𝛼 ≔

𝛼𝛼𝑀𝑀
2𝑁𝑁−1 − 1 

 

𝐴𝐴 ≔
2𝑁𝑁−1 − 1

𝑀𝑀 𝐴𝐴  



Two-Phase Cross Product 

Given vectors 𝐴𝐴,𝐵𝐵 ∈ 0, ±1, ±2, … , ± 2𝑁𝑁 −1 − 1 𝑛𝑛 and scalars 𝛼𝛼 and 𝛽𝛽: 

 

𝐶𝐶𝑅𝑅 ≔
𝐴𝐴

2𝑁𝑁−1 − 1
𝐵𝐵

2𝑁𝑁−1 − 1
 

 
γ𝑅𝑅 ≔ 𝛼𝛼𝛼𝛼(2𝑁𝑁−1 − 1) 

Now we need to be able to sum the elements of γ𝑅𝑅𝐶𝐶𝑅𝑅. 

This is done in two phases 



Phase One 

For simplicity, assume 𝑛𝑛 is a perfect square 

During training, 

𝑀𝑀𝐵𝐵𝐵 ≔ max
0≤𝑖𝑖< 𝑛𝑛

� 𝐶𝐶𝑅𝑅1+𝑗𝑗+𝑖𝑖 𝑛𝑛
0≤𝑗𝑗< 𝑛𝑛

 

 
𝑀𝑀1 ≔ 𝜌𝜌𝑀𝑀1 + 1 − 𝜌𝜌 𝑀𝑀𝐵𝐵1      (0 < 𝜌𝜌 < 1) 

 

 
Training: 
 
 

Inference: 
 

 

γ𝐴𝐴 ≔
γ𝑅𝑅𝑀𝑀𝐵𝐵1

2𝑁𝑁−1 − 1 
 

𝐶𝐶𝐴𝐴 ≔
2𝑁𝑁−1 − 1
𝑀𝑀𝐵𝐵1

𝐶𝐶𝑅𝑅  

 

γ𝐴𝐴 ≔
γ𝑅𝑅𝑀𝑀1

2𝑁𝑁−1 − 1 
 

𝐶𝐶𝐴𝐴 ≔
2𝑁𝑁−1 − 1

𝑀𝑀1
𝐶𝐶𝑅𝑅  



Phase One Continued 

Calculate 𝐶𝐶𝐵𝐵 ∈ 0, ±1, ±2, … , ± 2𝑁𝑁 −1 − 1 𝑛𝑛 defined as 

 

𝐶𝐶𝐵𝐵𝑖𝑖 = � 𝐶𝐶𝐴𝐴1+𝑗𝑗+𝑖𝑖 𝑛𝑛
0≤𝑗𝑗< 𝑛𝑛

 

 
γ𝐵𝐵 ≔ γ𝐴𝐴 



Phase Two 

During training, 

𝑀𝑀𝐵𝐵𝐵 ≔�𝐶𝐶𝐵𝐵 

𝑀𝑀2 ≔ 𝜌𝜌𝑀𝑀2 + 1 − 𝜌𝜌 𝑀𝑀𝐵𝐵2      (0 < 𝜌𝜌 < 1) 

 

Training: 
 
 

Inference: 
 

 

γ ≔
γ𝐵𝐵𝑀𝑀𝐵𝐵2

2𝑁𝑁−1 − 1 
 

𝐶𝐶 ≔�
2𝑁𝑁−1 − 1
𝑀𝑀𝐵𝐵𝐵

𝐶𝐶𝐵𝐵  

 

γ ≔
γ𝐵𝐵𝑀𝑀2

2𝑁𝑁−1 − 1 
 

𝐶𝐶 ≔
2𝑁𝑁−1 − 1

𝑀𝑀2
𝐶𝐶𝐵𝐵  
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