Scaling Transaction Verifications in Cryptocurrencies

PRIMES Computer Science Conference
October 13th, 2018
Yiming Zheng
Alin Tomescu

Motivation

Motivation

Balance: \$50

Balance: \$40

Balance: \$50

Motivation

Balance: \$50

Balance: \$40

Digest: d_{n}

Motivation

Balance: \$50, Proof: $\Pi_{A}(n)$

Balance: \$40, Proof: $\Pi_{B}(n)$

Digest: d_{n}
Balance: \$50, Proof: $\Pi_{c}(n)$

Motivation

Balance: \$40, Proof: $\Pi_{B}(n)$

Digest: d_{n}
Balance: \$50, Proof: $\Pi_{c}(n)$

Motivation

Balance: $\$ 50$,
Proof: $\Pi_{A}(n)$

Balance: \$40, Proof: $\Pi_{B}(n)$

Balance: \$50, Proof: $\Pi_{c}(n)$

Motivation

Digest: d_{n}
$\operatorname{Ver}\left(d_{n}, A, \$ 20, \Pi_{A}(n)\right)$

Balance: \$50, Proof: $\Pi_{A}(n)$

Balance: \$40, Proof: $\Pi_{B}(n)$

Balance: \$50, Proof: $\Pi_{c}(n)$

Motivation

Digest: d_{n}
$\operatorname{Ver}\left(d_{n}, A, \$ 20, \Pi_{A}(n)\right)=T$

Balance: \$50, Proof: $\Pi_{A}(n)$

Balance: \$40, Proof: $\Pi_{B}(n)$

Balance: \$50, Proof: $\Pi_{c}(n)$

Motivation

Digest: d_{n}
$\operatorname{Ver}\left(d_{n}, A, \$ 20, \Pi_{A}(n)\right)=T$
Alice indeed has $\$ 50$

Balance: \$50, Proof: $\Pi_{A}(n)$

Balance: \$40, Proof: $\Pi_{B}(n)$

Balance: \$50, Proof: $\Pi_{c}(n)$

Motivation

Balance: $\$ 50$,
Proof: $\Pi_{A}(n)$
Balance: \$40, Proof: $\Pi_{B}(n)$

Digest: d_{n}
$\operatorname{Ver}\left(d_{n}, A, \$ 20, \Pi_{A}(n)\right)=T$ Alice indeed has \$50

Balance: \$50, Proof: $\Pi_{c}(n)$

The server only stores a 32-byte digest d_{n}

Motivation

Digest: d_{n}

Balance: \$40, Proof: $\Pi_{B}(n)$
Balance: \$50, Proof: $\Pi_{A}(n)$

Balance: \$50, Proof: $\Pi_{c}(n)$

Motivation

Digest: d_{n+1}

Balance: \$30, Proof: $\Pi_{A}(n+1)$

Balance: \$40, Proof: $\Pi_{B}(n+1)$

Balance: \$70, Proof: $\Pi_{c}(\mathrm{n}+1)$

Motivation

Digest: d_{n+1}
Balance: \$70, Proof: $\Pi_{c}(n+1)$

Motivation

Balance: $\$ 30$,
Proof: $\Pi_{A}(n+1)$
Balance: \$40, Proof: $\Pi_{B}(n+1)$

Digest: d_{n+1}
$\operatorname{Ver}\left(d_{n+1}, A, \$ 40, \Pi_{A}(n+1)\right)=F$

Balance: \$70, Proof: $\Pi_{C}(n+1)$

Motivation

Balance: $\$ 30$,
Proof: $\Pi_{A}(n+1)$
Balance: \$40, Proof: $\Pi_{B}(n+1)$

Digest: d_{n+1}
$\operatorname{Ver}\left(d_{n+1}, A, \$ 40, \Pi_{A}(n+1)\right)=F$
Alice does not have sufficient funds

Balance: \$70, Proof: $\Pi_{c}(n+1)$

How can we do this?

How can we do this? Merkle Hash Trees (MHT)!

Building an MHT

Building an MHT

MHT Example

Root (Digest): Bank stores

$$
\mathrm{R}=\mathrm{H}\left(\mathrm{~N}_{0}, \mathrm{~N}_{1}\right)
$$

Account Balances (Users store)

MHT Proof of Balance

MHT Proof of Balance

MHT Proof of Balance Verification

MHT Proof of Balance Verification

$$
\mathrm{R}^{*}=\mathrm{R}
$$

MHT Updating Balance

MHT Updating Sender’s Balance

MHT Updating Sender’s Balance

MHT Updating Sender’s Balance

Building a Multivariate Polynonial Hash Tree (MPHT)

Building an MPHT

Building an MPHT

$$
\mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{0}\left(\mathrm{x}_{2}\right)+
$$

Building an MPHT

$$
R\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right) N_{0}\left(x_{2}\right)+x_{1} N_{1}\left(x_{2}\right)
$$

$\mathrm{N}_{0}\left(\mathrm{x}_{2}\right)=$
$\left(1-x_{2}\right) N_{00}+x_{2} N_{01}$

Building an MPHT

$$
R\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right) N_{0}\left(x_{2}\right)+x_{1} N_{1}\left(x_{2}\right)
$$

Building an MPHT

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{~N}_{0}\left(\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{1}\left(\mathrm{x}_{2}\right)= \\
& \left(1-\mathrm{x}_{1}\right)\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{00}+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2} \mathrm{~N}_{01}+x_{1}\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{10}+x^{2}
\end{aligned}
$$

$\mathrm{N}_{0}\left(\mathrm{x}_{2}\right)=$ $\left(1-x_{2}\right) N_{00}+x_{2} N_{01}$

Building an MPHT

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{~N}_{0}\left(\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{1}\left(\mathrm{x}_{2}\right)= \\
& \left(1-x_{1}\right)\left(1-x_{2}\right) \mathrm{N}_{00}+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2} \mathrm{~N}_{01}+x_{1}\left(1-x_{2}\right) \mathrm{N}_{10}+
\end{aligned}
$$

Building an MPHT

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{~N}_{0}\left(\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{1}\left(\mathrm{x}_{2}\right)= \\
& \left(1-x_{1}\right)\left(1-x_{2}\right) \mathrm{N}_{00}+\left(1-x_{1}\right) x_{2} N_{01}+\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{10}+
\end{aligned}
$$

Building an MPHT

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{~N}_{0}\left(\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{1}\left(\mathrm{x}_{2}\right)= \\
& \left(1-x_{1}\right)\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{00}+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2} \mathrm{~N}_{01}+\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{10}+\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{~N}_{11}
\end{aligned}
$$

Building an MPHT

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{~N}_{0}\left(\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{1}\left(\mathrm{x}_{2}\right)= \\
& \left(1-\mathrm{x}_{1}\right)\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{00}+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2} \mathrm{~N}_{01}+\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{10}+\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{~N}_{11}
\end{aligned}
$$

Building an MPHT

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{~N}_{0}\left(\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{1}\left(\mathrm{x}_{2}\right)= \\
& \left(1-\mathrm{x}_{1}\right)\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{00}+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2} \mathrm{~N}_{01}+\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{10}+x_{1} x_{2} \mathrm{~N}_{11}
\end{aligned}
$$

$$
\mathrm{R}(0,0)=\mathrm{N}_{00}
$$

Building an MPHT

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{~N}_{0}\left(\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{1}\left(\mathrm{x}_{2}\right)= \\
& \left(1-\mathrm{x}_{1}\right)\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{00}+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2} \mathrm{~N}_{01}+\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{10}+x^{2}
\end{aligned}
$$

Building an MPHT

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{~N}_{0}\left(\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{1}\left(\mathrm{x}_{2}\right)= \\
& \left(1-\mathrm{x}_{1}\right)\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{00}+\left(1-\mathrm{x}_{1}\right) x_{2} \mathrm{~N}_{01}+\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{10}+
\end{aligned}
$$

$$
\mathrm{R}(1,0)=\mathrm{N}_{10}
$$

Building an MPHT

$$
\begin{aligned}
& R\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{~N}_{0}\left(\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{1}\left(\mathrm{x}_{2}\right)= \\
& \left(1-x_{1}\right)\left(1-x_{2}\right) \mathrm{N}_{00}+\left(1-x_{1}\right) x_{2} N_{01}+x_{1}\left(1-x_{2}\right) \mathrm{N}_{10}+\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{~N}_{11}
\end{aligned}
$$

Building an MPHT

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \mathrm{~N}_{0}\left(\mathrm{x}_{2}\right)+\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{1}\left(\mathrm{x}_{2}\right)= \\
& \left(1-\mathrm{x}_{1}\right)\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{00}+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2} \mathrm{~N}_{01}+\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right) \mathrm{N}_{10}+\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{~N}_{11}
\end{aligned}
$$

MPHT Commitments to Polynomials

MPHT Example

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)= \\
& \left(1-\mathrm{x}_{1}\right) \mathrm{N}_{0}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{1} \mathrm{~N}_{1}\left(\mathrm{x}_{2}\right)
\end{aligned}
$$

Root (Digest): Bank stores

(1) $d_{n}=R$

MPHT Proof of

Balance Verification

MPHT Proof of
 Balance Verification

Check:

$$
\mathrm{R}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(1-\mathrm{x}_{1}\right) \mathrm{N}_{0}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{1} \mathrm{~N}_{1}\left(\mathrm{x}_{2}\right)
$$

MPHT Updating Digest

MPHT Updating Digest

MPHT Updating Digest

```
\Delta
```


MPHT Updating Digest

$$
\Delta_{1}\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)\left(1-x_{2}\right)(-30)
$$

MPHT Updating Digest

$$
\begin{aligned}
& \mathrm{R}^{\prime}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =\left(1-\mathrm{x}_{1}\right)\left(1-\mathrm{x}_{2}\right) 50+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2} 40+\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right) 30+\mathrm{x}_{1} \mathrm{x}_{2} 50+ \\
& \left(1-\mathrm{x}_{1}\right)\left(1-\mathrm{x}_{2}\right)(-30) \\
& =\left(1-\mathrm{x}_{1}\right)\left(1-\mathrm{x}_{2}\right) 20+\left(1-\mathrm{x}_{1}\right) \mathrm{x}_{2} 40+\mathrm{x}_{1}\left(1-\mathrm{x}_{2}\right) 30+\mathrm{x}_{1} x_{2} 50
\end{aligned}
$$

MPHT Updating Digest

$\Delta_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=+\mathrm{x}_{1} \mathrm{x}_{2} 30$

MPHT Updating Digest
 $$
\Delta_{2}\left(x_{1}, x_{2}\right)=+x_{1} x_{2} 30
$$

$$
\text { MPHT Updating Digest } \left\lvert\, \begin{aligned}
& R^{\prime}\left(x_{1}, x_{2}\right) \\
& =\left(1-x_{1}\right)\left(1-x_{2}\right) 20+\left(1-x_{1}\right) x_{2} 40+x_{1}\left(1-x_{2}\right) 30+x_{1} x_{2} 50 \\
& +x_{1} x_{2} 30 \\
& =\left(1-x_{1}\right)\left(1-x_{2}\right) 20+\left(1-x_{1}\right) x_{2} 40+x_{1}\left(1-x_{2}\right) 30+x_{1} x_{2} 80
\end{aligned}\right.
$$

MPHT Updating Proofs

- Out of time
- High-level idea:
- There exist "public parameters"
- Clients use them to update their proofs of balance after seeing transactions

Conclusion

- We present a new type of Merkle tree based on multivariate polynomials with an efficiently updatable digest
- Can be used to scale TXN verifications in cryptocurrencies (e.g. Ethereum)

Drawbacks/Future Work

- A large number of public parameters are needed in this construction to "hash" multivariate polynomials (however, clients do not need to store them if a fully-untrusted server does)
- Verifying proofs of balance in our tree is more expensive than the MHT construction ($\sim 1000 x$), but should still be much faster than going to disk

Acknowledgements

Thanks to my mentor Alin Tomescu for his support and guidance!

Thanks to PRIMES for this opportunity!
Thanks to my parents for their support!
Thank you!

Questions?

