Scaling Transaction Verifications in Cryptocurrencies

PRIMES Computer Science Conference October 13th, 2018 Yiming Zheng Alin Tomescu

Digest: d_n

Digest: d_n

Balance: \$50, Proof: $\Pi_A(n)$

Balance: \$40, Proof: Π_B(n)

Balance: \$50, Proof: Π_c(n)

How can we do this?

How can we do this? Merkle Hash Trees (MHT)!

Building an MHT

Building an MHT

MHT Example

Account Balances (Users store)

MHT Proof of Balance

MHT Proof of Balance

MHT Proof of Balance Verification

MHT Updating Sender's Balance

MHT Updating Sender's Balance

MHT Updating Sender's Balance

Building a Multivariate Polynonial Hash Tree (MPHT)

Building an MPHT

MPHT Commitments to Polynomials

Account Balances (Users store)

MPHT Updating Digest

MPHT Updating Digest

MPHT Updating Proofs

- Out of time
- High-level idea:
 - There exist "public parameters"
 - Clients use them to update their proofs of balance after seeing transactions

Conclusion

- We present a new type of Merkle tree based on multivariate polynomials with an efficiently updatable digest
- Can be used to scale TXN verifications in cryptocurrencies
 (e.g. Ethereum)

Drawbacks/Future Work

- A large number of public parameters are needed in this construction to "hash" multivariate polynomials (however, clients do not need to store them if a fully-untrusted server does)
- Verifying proofs of balance in our tree is more expensive than the MHT construction (~1000x), but should still be much faster than going to disk
Acknowledgements

Thanks to my mentor Alin Tomescu for his support and guidance!

Thanks to PRIMES for this opportunity!

Thanks to my parents for their support!

Thank you!

Questions?