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Introduction



Deep Learning (DL) can surpass humans
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At last — a computer program that
can beat a champion Go player PAGE 484
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Li Kegiang premier
added this line to start
the annual dialogue
mechanism with the
Canadian Prime Minister
Trudeau two prime
ministers held its first
annual session.

Li Kegiang will start the
annual dialogue
mechanism with Prime
Minister Trudeau of
Canada and hold the first
annual dialogue between
the two premiers.




DL in security-critical applications




Is DL ready for this?



Deep Neural Network (DNN) - Natural Setting

V. Fischer, M. Kumar, J. Metzen, T. Brox
“Adversarial Examples for Semantic Image Segmentation” 7




- Adversarial Setting

DNN




Why do we need robust DNNs?

Reliability Intelligence
e Some natural phenomena (e.g., e Goal of ML: Make intelligent
rain) can trick classifiers systems
e Train more reliable natural e Humanswouldn’t get fooled,

classifiers but these systems do



Background



How do we train robust DNNs?
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Adversarial Training - A robust training method
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Adversarial Training - A robust training method
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Why is Adversarial Training difficult?

e Takes alongtime tocompute good adversarial examples
e Training waits for these examples
e Process repeats several times before DNN finally becomes robust

> Time-Intensive Process
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Research focus: How can we
make Adversarial Training
more efficient?
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Technique 1: A closer look at
Adversarial Training



Concave loss landscapes are easily maximizable

e Goal of adversary: Get to
maximum loss
e Hypothetical loss landscape
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DNNs have tricky, hon-concave loss landscapes

e Actual loss landscape

e Hardtofind maxima, so need
multiple steps

e Each stepre-calculates
trajectory, which is Time
Intensive

H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein
“Visualizing the Loss Landscape of Neural Nets”
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How strong does the adversary need to be?
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How strong does the adversary need to be?
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How strong does the adversary need to be?
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Technique 2: Asynchronous
parallelization



Re-Visiting Adversarial Training
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Re-Visiting Adversarial Training
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High staleness training doesn't work
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Staleness can be pathological

32 Staleness (Good) 64 Staleness (Bad)


https://docs.google.com/file/d/1nuRFirhGn4cykFtom3mjh0_jhFYDT32e/preview
https://docs.google.com/file/d/1tqJ4Pn3_FIe1Cxp1M0GNxU-XG_3ij5vF/preview

Almost-linear speedup

8 1 —@— Measured Speedup
—¥— Linear Speedup

Number of GPUs
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4 hrs to 9 mins

Combining both techniques, we
achieve a 26x reduction in robust
MNIST training time



