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Introduction
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Deep Learning (DL) can surpass humans

4



DL in security-critical applications
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Is DL ready for this?
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Deep Neural Network (DNN) - Natural Setting
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V. Fischer, M. Kumar, J. Metzen, T. Brox
“Adversarial Examples for Semantic Image Segmentation”



DNN - Adversarial Setting
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Why do we need robust DNNs?

Intelligence

● Goal of ML: Make intelligent 
systems

● Humans wouldn’t get fooled, 
but these systems do
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Reliability

● Some natural phenomena (e.g., 
rain) can trick classifiers

● Train more reliable natural 
classifiers



Background
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How do we train robust DNNs?
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Adversarial Training - A robust training method
Natural Training Set

Model Parameters
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Adversarial Training - A robust training method
Adversarial Training Set

Model Parameters
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Why is Adversarial Training difficult?

● Takes a long time to compute good adversarial examples
● Training waits for these examples
● Process repeats several times before DNN finally becomes robust

➢ Time-Intensive Process
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Research focus: How can we 
make Adversarial Training 
more efficient?
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Technique 1: A closer look at 
Adversarial Training
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Concave loss landscapes are easily maximizable
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● Goal of adversary: Get to 
maximum loss

● Hypothetical loss landscape



DNNs have tricky, non-concave loss landscapes

18

● Actual loss landscape
● Hard to find maxima, so need 

multiple steps
● Each step re-calculates 

trajectory, which is Time 
Intensive

H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein
“Visualizing the Loss Landscape of Neural Nets”



How strong does the adversary need to be?
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How strong does the adversary need to be?
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How strong does the adversary need to be?
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How strong does the adversary need to be?
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Technique 2: Asynchronous 
parallelization
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Re-Visiting Adversarial Training
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Re-Visiting Adversarial Training
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High staleness training doesn’t work
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Staleness can be pathological

2732 Staleness (Good) 64 Staleness (Bad)

https://docs.google.com/file/d/1nuRFirhGn4cykFtom3mjh0_jhFYDT32e/preview
https://docs.google.com/file/d/1tqJ4Pn3_FIe1Cxp1M0GNxU-XG_3ij5vF/preview


Almost-linear speedup
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4 hrs to 9 mins 
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Combining both techniques, we 
achieve a 26x reduction in robust 
MNIST training time


