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Abstract

The chromatic symmetric function defined by Stanley is a power series that is symmetric in an

infinite number of variables and generalizes the chromatic polynomial. Shareshian and Wachs defined

the chromatic quasisymmetric function, and Awan and Bernardi defined an analog of it for digraphs.

Three decades ago, Stanley posed a question equivalent to “Does the chromatic symmetric

function distinguish between all trees?” A similar question can be raised for rooted trees: “Does

the chromatic quasisymmetric function distinguish between all rooted trees?”. Hasebe and Tsujie

showed algebraically the stronger statement that the order quasisymmetric function distinguishes

rooted trees. Here, we aim to directly extract useful statistics about a tree given only its order

quasisymmetric function. This approach emphasizes the combinatorics of trees over the the algebraic

properties of quasisymmetric functions. We show that a rooted-tree-statistic we name the “co-height

profile profile” is extractable, and that it distinguishes rooted 2-caterpillars.

∗jcai1@exeter.edu
†slettnes@ohs.stanford.edu
‡jzhou21@andover.edu

1



1 Introduction

The chromatic polynomial χG(n) of a graph is a well-studied graph invariant, defined as the unique

polynomial that counts proper colorings of a graph G using n colors.

Stanley [1] defined the chromatic symmetric function XG(x) , a symmetric power series in an infinite

number of variables that generalizes the chromatic polynomial. Specifically, the chromatic symmetric

function is defined for a graph G and indeterminates x = (x1, x2, . . .) by

XG(x) =
∑
f

∏
v∈V (G)

xf(v),

where the sum is over all proper colorings f : V (G) → N. This generalizes the chromatic polynomial

by the following: χG(n) = XG(1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . ).

There is an open question posed by Stanley equivalent to whether or not the chromatic symmetric

function uniquely distinguishes all trees, which admitted some partial results but is still being actively

studied [1, 4, 2, 8, 3].

Shareshian and Wachs [5] defined a refinement of the chromatic symmetric function for labeled

graphs, which they called the chromatic quasisymmetric function, defined by

XG(x, t) =
∑
f

tasc(f) ∏
v∈V (G)

xf(v)

 ,

where the sum is again over all proper colorings f : V (G) → N and asc(f) := |{{i, j} ∈ E(G) :

i < j and f(i) < f(j)}|. Awan and Bernardi [6, Equation 74] adopted this to define the chromatic

quasisymmetric function of an unlabeled acyclic digraph D by setting asc(f) := |{(u, v) ∈ A(D) :

f(u) < f(v)}|, where A(D) is the arc set of D.

Taking an analogue of Stanley’s question for digraphs, we might ask if the chromatic quasisymmetric

function distinguishes rooted trees.

Hasebe and Tsujie [7] showed with an algebraic method that rooted trees are distinguished by what

they call the strict order quasisymmetric function, defined for a poset P by

Γ<(P,x) =
∑

f∈Hom<(P,N)

∏
v∈P

xf(v),

where Hom<(P,N) is the set of strict homomorphisms from P to N. This is a stronger claim than

the question above; for posets, the strict order quasisymmetric function only takes the terms of the

chromatic quasisymmetric function where the degree of t is |E(G)|. In this paper, we similarly deduce

statistics of rooted trees from their order quasisymmetric function, but instead present a combinatorial

approach.

In Section 2, we formulate our question of interest precisely and define relevant terminology. In

Section 3, we show that a rooted tree statistic we call the “co-height profile profile” can be extracted

from the order quasisymmetric function. Finally, in Section 4, we study the information extractable from

the co-height profile profile. Among other results, we show that the co-height profile profile distinguishes

rooted 2-caterpillars.
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2 Terminology

We say that a digraph T is a rooted tree if its underlying graph is a tree, and all vertices except for one,

the root, denoted vT , have indegree 1. The leaves of a rooted tree are the vertices with outdegree 0.

Layer 1, Co-height 0

Layer 2, Co-height 1

Layer 3, Co-height 2

Layer 4, Co-height 3

Layer 5, Co-height 4

Layer 6, Co-height 5

Figure 1:

Co-heights and layers of a rooted tree.

The height of a vertex v in a rooted tree, denoted

Hv, is the length of (number of arcs in) the longest

directed path from v to a leaf, and the co-height,

which we denote hv, is the length of the directed

path from the root vT to v. We define the height

of T to be HvT , and denote it HT . The ith layer

of the rooted tree, denoted Li, is the set of all

vertices with co-height i− 1. See Figure 1 for an

example rooted tree labeled with its layers. The

subtree with root v, denoted Sv, is the induced

subdigraph formed by every vertex w where the

directed path from vT to w goes through v. The

weight of v is |Sv|, which we denote wv.

The strict order quasisymmetric function of a poset P and indeterminants x = (x1, x2, . . .) is

Γ<(P,x) =
∑

f∈Hom(P,N)

∏
a∈P

xf(a)

where Hom(P,N) is the set of homomorphisms from P to N. For any acyclic digraph D, we define

Γ<(D,x) to be Γ<(PD,x) where PD is the poset on the vertices of D with the relation u < v iff there

is a path from u to v.

We say that a tree-statistic is a function from the set of rooted trees to any set. A tree-statistic S

is extractable if for all rooted trees T1, T2 where Γ<(T1,x) = Γ<(T2,x), S(T1) = S(T2), i.e., if S(T )

can be extracted from Γ<(T,x).

If f is a formal power series in x, then we denote by [xai ]f the coefficient of f on the term xi . For

multivariate formal power series, we similarly use e.g. [xai y
b
j ]f for the coefficient of f on the monomial

xai y
b
j .

We denote multisets with double curly braces, e.g.,{{{
2j
∣∣ j ∈ N, j <

n

2

} ∣∣∣n ∈ {{0, 2, 3, 3, 4, 5}}}} = {{∅,∅, {2}, {2}, {2}, {2, 4}}}.

Definition 2.1. For a rooted tree T, a vertex statistic (au)u∈V (T ), and a vertex v ∈ V (T ), we define

P a
v to be the multiset {{au | u ∈ Sv}} and P a

T to be P a
vT
.

Definition 2.2. We define the height profile, co-height profile and weight profile of a vertex or rooted

tree X to be PH
X , P

h
X , and Pw

X , respectively. We can also extend this to say e.g., that the weight profile

profile profile of X is PPPw

X .
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Example 2.3. The co-height profile profile of the rooted tree T

depicted in Figure 2 is

PPh

T =
{{
{{2}}, {{3}}, {{3}}, {{3}}, {{4}}, {{4}}, {{4}},

{{2, 3}}, {{3, 4}}, {{3, 4}}, {{3, 4}},
{{2, 3, 4}}, {{2, 3, 3, 4}}, {{2, 3, 3, 4}},
{{1, 2, 3, 3, 4}}, {{1, 2, 2, 3, 3, 4}}, {{1, 2, 2, 3, 3, 4}},

{{0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4}}
}}

Figure 2: Rooted tree T.

3 Main Result

Throughout this section, we fix a rooted tree T . The main result of this paper is that the tree’s co-height

profile profile PPh

T is extractable (Corollary 3.21).

We begin with some definitions.

Definition 3.1. A coloring is a function f : V (T )→ N, where V (T ) is the vertex set of T . We think

of the elements of N as being colors, so f assigns a color in N to each vertex in T .

Definition 3.2. A coloring f : V (T )→ N is increasing if for every edge (u, v), f satisfies f(u) < f(v).

Viewing T as a poset, this condition is equivalent to f being a homomorphism of posets. Notice that the

strict order quasisymmetric function is defined as a sum over increasing colorings, so we only consider

increasing colorings in this paper.

Definition 3.3. Given an increasing coloring f , we define

[f ]Γ<(T,x) =
∏
v∈T

xf(v).

In other words, [f ]Γ<(T,x) is the term in the strict order quasisymmetric function corresponding to f .

Definition 3.4. Given an increasing coloring f , let f−1(i) be the set of vertices that are colored i in f .

Notice that the exponent of xi in [f ]Γ<(T,x) is |f−1(i)|.

Definition 3.5. For two infinite tuples a = (a1, a2, . . . ) and b = (b1, b2, . . . ), we say that a is lexico-

graphically less than b if there exists an i such that a1 = b1, . . . , ai = bi and ai+1 < bi+1. Clearly, this

defines a total order on infinite tuples.

Definition 3.6. For p a polynomial in (xi)i∈N, let max(p) be its lexicographically greatest term, where

each term xe11 x
e2
2 · · · is considered as the tuple (e1, e2, . . . ).

To show that the co-height profile profile PPh

T is extractable, we first extract a simpler tree-statistic,

the co-height profile P h
T .

To do this, we consider a particular increasing coloring f∅ that we can isolate from the strict order

quasisymmetric polynomial. In the following lemma, we ascertain exactly what f∅ looks like. Then, in

the final proof, we show that f∅ contains enough information to extract P h
T .
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Definition 3.7. Let f∅ be the increasing coloring such that

[f∅]Γ<(T,x) = max
(
Γ<(T,x)

)
.

Equivalently, f∅ is the increasing coloring that maximizes (|f−1(1)|, |f−1(2)|, . . . ) with respect to lexi-

cographic order (from now on, all order is lexicographic).

Lemma 3.8. f∅ is the increasing coloring such that f−1∅ (i) = Li for all i. One example is shown in

Figure 3.

1

2

3

4 4

2

3

4

2

3 3

4

layer 1

2

3

4

Figure 3: One example of the increasing coloring f∅.

Proof. We proceed by induction.

Base case: By definition, f∅ is the increasing coloring that maximizes |f−1(1)|. Note that the

only vertex that can be colored 1 is vT : if any other vertex was colored 1, then the root could not

be colored with a positive integer. Thus, the maximum value of |f−1(1)| is 1, attained by setting

f−1(1) = {vT } = L1.

Inductive step: Suppose that f−1(i) = Li for all i ≤ n. Recall that f∅ is the increasing coloring

that maximizes |f−1(n+ 1)|. Pick any vertex v ∈ Ln+1, and let us restrict our attention to the subtree

Sv. Notice that we have the same situation as the base case: the only vertex that can be colored n+ 1

is the root v. Because there are |Ln+1| such subtrees Sv, the maximum value of |f−1(n+ 1)| is |Ln+1|,
attained by setting f−1(n+ 1) = Ln+1. This completes the induction.

Theorem 3.9. The co-height profile P h
T is extractable.

Proof. Recall that if we write [f∅]Γ<(T,x) as xe11 x
e2
2 · · · , then by the definition of the strict order

quasisymmetric function, ei = |f−1∅ (i)|. We just found in Lemma 3.8 that |f−1∅ (i)| = |Li|. From the

|Li|, we can deduce the co-height profile P h
T because there are exactly |Li| vertices at co-height i− 1.

Thus, from [f∅]Γ<(T,x), we can deduce P h
T .

To make the next step towards proving the main result, we will perturb f∅ to obtain a new increasing

coloring fn. This new increasing coloring may be thought of as f∅ with one extra “gap.”

First, we show how to isolate fn from the strict order quasisymmetric polynomial. In the following

lemma, we ascertain exactly what fn looks like. Then, in the final proof, we show that fn contains

enough information to extract a useful preliminary result (not yet PPh

T ).
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Definition 3.10. Given a positive integer n for which T has an nth layer, let fn be the increasing

coloring such that

[x
|L1|
1 . . . x

|Ln−1|
n−1 x|Ln|−1

n ][fn]Γ<(T,x) = max([x
|L1|
1 . . . x

|Ln−1|
n−1 x|Ln|−1

n ]Γ<(T,x)).

Equivalently, fn is the increasing coloring that maximizes (|f−1(1)|, |f−1(2)|, . . . ) given that

|f−1(1)|, . . . , |f−1(n− 1)|, |f−1(n)| are fixed at |L1|, . . . , |Ln−1|, |Ln| − 1.

We need one quick definition to state the next lemma.

Definition 3.11. Let Lj(v) be the jth layer of Sv. If j ≤ 0, then we set Lj(v) = ∅.

Lemma 3.12. fn is the increasing coloring such that f−1n (i) = Li−n(g) ∪ (Li \ Li−n+1(g)), where

g ∈ Ln is the vertex having the lexicographically least coheight profile out of all of the vertices in Ln.

One example is shown in Figure 4.

1

2

3

4 4

3

4

5

2

3 3

4

layer 1

2

3

4

g

Figure 4: One example of the increasing coloring f2. The gap g is circled.

Proof. We have that |f−1(1)| = |L1| = 1. As in the proof of Lemma 3.8, note that the only vertex that

can be colored 1 is vT . Thus, the only way to attain |f−1(1)| = 1 is by setting f−1(1) = {vT } = L1.

Using a similar induction argument as in Lemma 3.8, we can conclude that f−1(i) = Li for i < n.

We also notice that |f−1(n)| is maximized when f−1(n) = Ln, but we have fixed |f−1(n)| at |Ln| − 1,

so there must be one vertex in Ln that is not colored n: what we call a “gap.” Let this vertex be g.

Soon, we will show that g is the vertex with the lexicographically least co-height profile out of all the

vertices in Ln.

Pick any vertex v ∈ Ln, and let us restrict our attention to the subtree Sv. Suppose that its root

v is colored f(v). The argument used in Lemma 3.8 gives that for all j, Lj(v) must be completely

colored f(v) + j − 1. This additionally implies that within Sv, for any color i, the only vertices colored

i are Li−f(v)+1(v); in other words, f−1(i) ∩ Sv = Li−f(v)+1(v).

Now, remember that fn is the increasing coloring that maximizes |f−1(n+ 1)|.

First, we consider only the vertices in Sg. Notice that the only vertex in Sg that can be colored

n+ 1 is g. Thus, in order to maximize |f−1(n+ 1)|, we must have f(g) = n+ 1.

Recall that most vertices in Ln are colored n, with the exception of g; in other words, for v 6= g ∈ Ln,
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f(v) = n. Thus, we have that

f−1(i) =
⋃

v∈Ln

(f−1(i) ∩ Sv)

=
⋃

v∈Ln

Li−f(v)+1(v)

= Li−n(g) ∪
⋃

v 6=g∈Ln

Li−n+1(v)

= Li−n(g) ∪ (Li \ Li−n+1(g)),

as desired.

It remains to show that g is the vertex with the lexicographically least co-height profile out of all

the vertices in Ln.

The above formula for f−1(i) gives that

|f−1(n+ 1)| = |L1(g)|+ |Ln+1| − |L2(g)|

Given that |L1(g)| is always 1, the maximum value of |f−1(n+ 1)| is attained with the choice of g such

that |L2(g)| is the smallest.

If there are multiple g with this minimum, then we maximize |f−1(n+ 2)|. Again, we use the above

formula for f−1(i) to obtain

|f−1(n+ 2)| = |L2(g)|+ |Ln+2| − |L3(g)|.

Remember that we are only considering g that attain the minimum value of |L2(g)|. Thus, the maximum

value of |f−1(n+2)| is attained with the choice of g that minimizes |L3(g)|. Continuing in this fashion,

we see that g is the vertex in Ln such that (|L2(g)|, |L3(g)|, . . . ) is lexicographically least, which is

equivalent to P h
g being lexicographically least.

Now, to state the next theorem, we need one new piece of notation.

Definition 3.13. Given a multiset of profiles S, we let min(S) be its lexicographically least element,

where each profile is considered as the tuple

(multiplicity of 1,multiplicity of 2, . . . ).

Theorem 3.14. Given a positive integer n for which T has an nth layer, min
({{
P h
v | v ∈ Ln

}})
(the

least co-height profile of a vertex in layer n) is extractable.

Proof. Recall that if we write [fn]Γ<(T,x) as xe11 x
e2
2 · · · , then by the definition of the strict order

quasisymmetric function, ei = |f−1n (i)|. By the formula for |f−1n (i)| that we found in Lemma 3.8, we

can use the |f−1n (i)| to find |Lj(g)| for all j:

|L1(g)| = 1,

and

|Lj(g)| = |Ln+j−1| − (|f−1n (n+ j − 1)| − |Lj−1(g)|).
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(Remember that by Theorem 3.9, we already know all values of |Ln+j−1|.)

Thus, knowing [fn]Γ<(T,x) gives us (|L1(g)|, |L2(g)|, . . . ). This is equivalent to P h
g , which by

definition of g is the same as min
({{
P h
v | v ∈ Ln

}})
.

Remark 3.15. There is a possibility that there are multiple choices for g, i.e. that there are multiple

vertices having the least co-height profile out of all the vertices in Ln. In this case, there would not

be a unique choice of fn. However, putting any choice of fn through the algorithm in Theorem 3.14

will produce the same co-height profile P h
g , since by definition the choices of g have the same co-height

profile.

The above result is not enough to show that PPh

T is extractable. However, if we generalize the

above result from 1 gap to m gaps, then we will be able to prove the main result.

This generalization uses another perturbation of f∅ that we call fn,m. Again, we show how to isolate

fn,m in the first definition; in the following lemma, we ascertain what fn,m looks like; and in the final

proof, we show that fn,m contains enough information to extract the mth least co-height profile in layer

n.

Definition 3.16. Given positive integers n,m for which Ln has at least m vertices, let fn,m be the

increasing coloring such that

[x
|L1|
1 . . . x

|Ln−1|
n−1 x|Ln|−m

n ][fn,m]Γ<(T,x) = max([x
|L1|
1 . . . x

|Ln−1|
n−1 x|Ln|−m

n ]Γ<(T,x)).

Equivalently, fn,m is the increasing coloring that maximizes (|f−1(1)|, |f−1(2)|, . . . ) given that

|f−1(1)|, . . . , |f−1(n− 1)|, |f−1(n)| are fixed at |L1|, . . . , |Ln−1|, |Ln| −m.

Lemma 3.17. fn,m is the increasing coloring such that

f−1n,m(i) =
⋃

1≤k≤m
Li−n(gk) ∪

Li \
⋃

1≤k≤m
Li−n+1(gk)

 ,

where g1, . . . , gm ∈ Ln are the m vertices having the lexicographically least coheight profiles out of all

of the vertices in Ln. One example is shown in Figure 5.

1

3

4

5 5

3

4

5

2

3 3

4

layer 1

2

3

4

g1g2

Figure 5: One example of the increasing coloring f2,2. The gaps g1 and g2 are circled.

Proof. Let g1, . . . , gm ∈ Ln be the m vertices with the lexicographically least coheight profiles out of

all the vertices in Ln. Using the same reasoning as Lemma 3.12, fn,m is the coloring such that:
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• Li for i < n is completely colored i,

• Lj(gk) for any j, k is colored n+ j,

• and Lj(v) for any j, v 6= gk ∈ Ln is colored n+ j − 1.

This means that

f−1n,m(i) =
⋃

1≤k≤m
Li−n(gk) ∪

Li \
⋃

1≤k≤m
Li−n+1(gk)

 .

To state the next theorem, we generalize the min(S) notation:

Definition 3.18. We extend the min(S) notation to minm(S). Recall that min(S) is the lexicograph-

ically least element of S; we let minm(S) be the mth lexicographically least element of S.

Theorem 3.19. Given positive integers n,m for which Ln has at least m vertices, minm

({{
P h
v | v ∈ Ln

}})
(the mth least co-height profile of a vertex in layer n) is extractable.

Proof. Recall that if we write [fn,m]Γ<(T,x) as xe11 x
e2
2 · · · , then by the definition of the strict order

quasisymmetric function, ei = |f−1n,m(i)|. Just as in Theorem 3.14, we can use the |f−1n,m(i)| to find∣∣∣⋃1≤k≤m Lj(gk)
∣∣∣ for all j: ∣∣∣∣∣∣

⋃
1≤k≤m

L1(gk)

∣∣∣∣∣∣ = m

and ∣∣∣∣∣∣
⋃

1≤k≤m
Lj(gk)

∣∣∣∣∣∣ = |Ln+j−1| −

|f−1n,m(n+ j − 1)| −

∣∣∣∣∣∣
⋃

1≤k≤m
Lj−1(gk)

∣∣∣∣∣∣
 .

(Remember that by Theorem 3.9, we already know all values of |Ln+j−1|.)

If we do the same procedure for [fn,m−1]Γ
<(T,x), then we can find

∣∣∣⋃1≤k≤m−1 Lj(gk)
∣∣∣ for all j.

Then, since the Sgk are disjoint, we have

Lj(gm) =

∣∣∣∣∣∣
⋃

1≤k≤m
Lj(gk)

∣∣∣∣∣∣−
∣∣∣∣∣∣

⋃
1≤k≤m−1

Lj(gk)

∣∣∣∣∣∣ .
Thus, from [fn,m]Γ<(T,x) and [fn,m−1]Γ

<(T,x) we can deduce (L1(gm), L2(gm), . . . ). This is

equivalent to P h
gm , which is by definition of gm the same as minm

({{
P h
v | v ∈ Ln

}})
.

Remark 3.20. There is a possibility that the choices of g1, . . . , gm are not unique. In this case, just

as in Remark 3.15, any choices of fn,m and fn,m−1 will work: putting any choices of fn,m and fn,m−1
through the algorithm in Theorem 3.19 will produce the same co-height profile.

Now, we finally have enough information to prove the main result.
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Corollary 3.21. The co-height profile profile PPh

T is extractable.

Proof. By Theorem 3.19, we know that minm

({{
P h
v | v ∈ Ln

}})
is extractable for all positive integers

n,m such that Ln has at least m vertices.

Notice that for a fixed n, compiling minm

({{
P h
v | v ∈ Ln

}})
for every 1 ≤ m ≤ |Ln| gives the entire

multiset
{{
P h
v | v ∈ Ln

}}
. Then, compiling

{{
P h
v | v ∈ Ln

}}
for every 1 ≤ n ≤ HT gives the coheight

profile profile PPh

T .

4 Consequences

We show that the coheight profile profile PPh
allows us to extract a lot of information about rooted

trees. In this section, we present four examples of tree statistics that can be derived from the coheight

profile profile, but cannot be derived from just the coheight profile.

Corollary 4.1. The weight profile (Pw) of layer Li is extractable.

Proof. For a given vertex v in layer Li of tree T , its weight |Sv| can be determined by counting the

number of vertices in its coheight profile P h
v . The weight profile of layer Li is then obtained by taking

the multiset of this result over all vertices in layer Li.

Corollary 4.2. The height profile (PH) of layer Li is extractable.

Proof. For a given vertex v in layer i of tree T , its height Hv can be determined by counting the number

of layers in its coheight profile P h
v . Taking the multiset of this result over all vertices in Li gives us the

height profile of layer i, and also of the entire tree T .

Corollary 4.3. The outdegree distribution of the vertices in Li is extractable.

Proof. For a vertex v in layer i, the outdegree of v can be determined by counting the number of vertices

in L2(Sv). Taking the multiset of this result over all vertices in Li gives us the outdegree distribution

of layer i, and thus of the entire tree T .

Corollary 4.4. The number of leaves in Li is extractable.

Proof. The number of leaves in Li can be determined by counting the number of vertices in layer i that

have the same coheight profile as that of a leaf.

Our main consequence is that the coheight profile profile can distinguish between rooted 2-caterpillars.

Definition 4.5. Define the distance between two vertices to be the length of the shortest path between

them. Then, an n-caterpillar tree is rooted directed tree in which there exists a directed path of vertices

(v1, v2, . . . vk) such that for every vertex w there exists a vertex vi in which the distance between w and

vi is at most n. The path (v1, v2, . . . vk) is called the spine of the tree.

One example is shown in Figure 6.
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Figure 6: An example of a 2-caterpillar tree, in which the spine is the central column of vertices.

Corollary 4.6. If T1 and T2 are two 2-caterpillar trees with the same coheight profile profile, then

T1 = T2.

Proof. Consider a 2-caterpillar tree C. Note that each vertex v in C that does not belong to the spine

must belong to one of three types (which we denote types 1, 2, and 3):

1. a leaf that is a child of a vertex on the spine.

2. a leaf that is a grandchild of a vertex on the spine.

3. a vertex that is a child of a vertex on the spine, with Sv a tree of height 1.

We use an inductive argument. We know L1 must consist of one vertex, the root vC . Then, suppose

C can be uniquely determined up to layer n− 1. In Ln, there must be exactly one vertex on the spine.

From
⋃

v∈Ln
P h
v , the number of type 3 vertices and the number of leaves (of either type 1 or 2) in

layer n can be determined. However, notice that all type 2 vertices in Ln are uniquely determined by

the P h
v of type 3 vertices in layer n − 1. Thus, the remaining leaves in Ln must all be type 1. In this

way, it is possible to uniquely determine the vertices in layer n for n = 1, 2, . . . ,HC using
⋃

v∈Ln
P h
v

and
⋃

v∈Ln−1
P h
v , both of which are derived from the coheight profile profile. C itself is then uniquely

determined.

Remark 4.7. It follows that the coheight profile profile can distinguish between all 1-caterpillars.

Remark 4.8. Since every tree of height 2 is expressible as a 2-caterpillar, the coheight profile profile

can distinguish between all trees of height 2.

5 Limitations

Our methods are capable of distinguishing trees of height 2, but not all trees of height 3. For example,

the two trees in Figure 7 have the same coheight profile profile, and are thus indistinguishable by our

current method.
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Figure 7: Two distinct trees with the same coheight profile profile.

It would be interesting to find a combinatorial method of proving trees of height 3 are distinguishable

using a similar argument to the coheight profile profile.

Since the most powerful tree-statistic we have found so far is the coheight profile profile, it is natural

to consider families of trees that share this statistic. We are interested, then, in the following question:

1. Under what conditions will two trees T1, T2 share the same coheight profile profile?

We attempt to make progress at this question by considering a narrower situation. We first introduce

a definition.

Definition 5.1. In a rooted directed tree with root r, let the path from r to a vertex m be (r =

x1, x2, . . . xhm+1 = m) and let the path from r to a vertex n in the same layer as m be (r =

y1, y2, . . . yhn+1 = n). Then, vertices m and n are path compatible if P h
xi

= P h
yi for all 1 ≤ i ≤ hm = hn.

Given a new rooted directed tree T1, we choose two subtrees Sa, Sb of T1 such that ha = hb. Create

a second tree T2 identical to T1 except that the locations of Sa and Sb are swapped.

Proposition 5.2. Two such trees T1, T2 share the same coheight profile profile if and only if at least

one of the two following conditions are satisfied:

1. a, b share the same coheight profile.

2. Let the least common ancestor of a and b be vertex v. Let the parents of a, b be â, b̂. Let T be

the tree obtained by deleting Sa and Sb from T1. Then, â and b̂ are path compatible in T .

Proof. For the sake of simplicity, redefine T1, T2 to be their subtrees having v as the root, since these

are the only vertices whose coheight profiles are affected by the swapping of Sa and Sb. To force T1 and

T2 to have the same coheight profile profile, we use casework, starting from the root layer and traversing

down. Let Ti(m) be the vertex m as an element of tree Ti. In T1, let the paths from vT1 to T1(a)

and T1(b) be (v = T1(p1), T1(p2), . . . T1(pha+1) = a) and (v = T1(q1), T1(q2), . . . T1(qhb+1) = b), and

define the paths from from vT2 to T2(a) and T2(b) analogously. The idea is that in each layer Li, either

T1(pi) and T2(pi) will have the same coheight profile, or T1(pi) and T2(qi) will have the same coheight

profile.

Layer 1: P h
T1

= P h
T2

. This is always true.
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Layer 2:
{
P h
T1(p2)

, P h
T1(q2)

}
=
{
P h
T2(p2)

, P h
T2(q2)

}
. Here we have two cases:

Case 1: P h
T1(p2)

= P h
T2(p2)

and P h
T1(q2)

= P h
T1(q2)

. Since ST1(p2)\Sa and ST1(q2)\Sb remain constant

after swapping, this occurs only if P h
a = P h

b (Sa and Sb share the same coheight profile, condition 1).

Case 2: P h
T1(p2)

= P h
T2(q2)

and P h
T1(q2)

= P h
T2(p2)

. Since Sa and Sb remain constant, this occurs only

if P h
T1(Sp2\Sa)

= P h
T2(Sp2\Sa)

and P h
T1(Sq2\Sb)

= P h
T2(Sq2\Sb)

, so in general, P h
Sp2\Sa

= P h
Sq2\Sb

(condition

2).

Continuing in this manner, we see that for each successive layer, it is always the case that at least one

of the two conditions must be satisfied. The other direction is clear: if either one of the two conditions

are satisfied, T1 and T2 must share the same coheight profile profile. This concludes our proof.

Remark 5.3. In the scenario above, to create tree T2 from T1, we swapped Sa and Sb, the entire

subtrees defined by a and b. There is a generalized version of proposition 5.2 where we swap only the

subtrees defined by j children branching off each of a and b, where j is less than the outdegree of either

a or b. This is clear by applying proposition 5.2 multiple times on the layer below a and b. In this case,

analogous results occur, and the straightforward statement and proof is left to the reader.

6 Conclusion

In this paper, we were able to extract the co-height profile profile of T directly from its order quasisym-

metric function Γ<(T,x). It follows from the work of Hasabe and Tsujie [7] that knowing Γ<(T,x)

is enough to determine the co-height profile . . . profile for arbitrarily many iterations of “profile”, but

the method in [7] is not algorithmic. It would be interesting if a method were found to extract these

arbitrary iterations of “profile” directly from Γ<(T,x). For example, although the two trees in Figure

7 have the same co-height profile profile, they do not have the same co-height profile profile profile. If

a method were found to extract arbitrarily many iterations of “profile”, it would completely determine

any tree T directly from its Γ<(T,x).
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[4] Martin Loebl and Jean-Sébastien Sereni. “Potts partition function and isomorphisms of trees”. In:

(May 2014). url: https://iti.mff.cuni.cz/series/2014/611.pdf.

[5] J. Shareshian and M. L. Wachs. “Chromatic quasisymmetric functions”. In: arXiv e-prints, arXiv:1405.4629

(May 2014), arXiv:1405.4629. arXiv: 1405.4629 [math.CO].

[6] Jordan Awan and Olivier Bernardi. “Tutte Polynomials for Directed Graphs”. In: arXiv e-prints,

arXiv:1610.01839 (Oct. 2016), arXiv:1610.01839. arXiv: 1610.01839 [math.CO].

[7] T. Hasebe and S. Tsujie. “Order Quasisymmetric Functions Distinguish Rooted Trees”. In: arXiv

e-prints, arXiv:1610.03908 (Oct. 2016), arXiv:1610.03908. arXiv: 1610.03908 [math.CO].
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