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Motivation

Wanted to study the computational complexity of recreational games

Mainly inspired by the work of Erik Demaine

Chose roller-splat, a game that exemplifies the motif of a maximal
sliding agent

Maximal Sliding agents have wide ranging applications in both
robotics and video game design itself
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Examples
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Definitions

Definition (P)

The complexity class P contains all problems such that there exists a DTM
L which decides P in time that is bounded by a polynomial function of the
input size.

Definition (NP)

When a decision problem Π has a succinct certificate which can be used to
check that a given instance is true in polynomial time then we say that the
associated language, LΠ = {x |x is a natural encoding of an instance of Π}
is accepted in non-deterministic polynomial time, or it is in NP. In other
words, given a proposed “solution” to a problem in NP, there exists a
polynomial time algorithm to check the validity of this solution.
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Definition

Definition (NP-hard)

We define a language L to be NP-hard if A ∈ NP implies that A ≤m L.
Such a language L is at least as difficult as any other language in NP.

Definition (NP-complete)

We define a language L to be NP-complete if L is both in NP and is
NP-hard.
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Stopping Point and Movement Graph Representation

Stopping Point graph G consists of vertices where the paintball call
stop, and directed edges if you can go from one point to another.

Movement graph H consists of vertices as back-and-forth movements
for the paintball, and directed edges if one movement can go to
another by turning.

Figure: Original Grid Figure: Graph G Figure: Graph H
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Stop Reachability

Theorem (Stop Reachability)

Given a board, a starting square, and an ending square, the problem of
determining whether there exists a path from the starting square that
stops on the ending square is in P.

Proof.

Stopping Point Graph Representation G in O(N4) time.

Add starting point to graph with indegree 0, outdegree ≤ 4.

Perform BFS in O(V + E ) = O(N4) to find path.
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Pass Reachability

Theorem (Pass Reachability)

Given a board, a starting square, and an ending square, the problem of
determining whether there exists a path from the starting square that
passes through the ending square is in P.

Proof.

Similar to above proof.

Add special red vertex v corresponding to the ending square into G .

Connect directed edges into v .

Perform BFS in O(N4) time to find path to red vertex.
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Stop Coverage

Theorem

Given a board and a starting square, the problem of determining whether
it is possible to stop on every square in the board is in P.

Proof.

Stopping Point Graph Representation G .

Check if every vertex is in G . If not, done. Find a traversal through
this graph.

Use Tarjan’s algorithm to reduce graph to G ′ by condensing Strongly
Connected Components (SCCs) into vertices.

Returns new vertices in reverse topological ordering.

Check if path exists from each vertex in the topological ordering to
the next.
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Pass Coverage

Theorem (Pass Coverage)

Given a board and a starting square, the problem of determining whether
it is possible to pass through every square in the board is in P.

Theorem (Tejada)

Given a board, of which some (specified) squares have a collectible object
in them, and a starting square, the problem of determining whether it is
possible to collect every object by passing through its squares is in P.

Simply fill every square with collectible object.

His proof involved using the Movement Graph Representation H of the
board and contracting all SCCs to the reduced graph H ′. Then, we can
associate every pearl with two movements, vertices in H ′, and construct a
2-SAT formula that is satisfiable if and only if all the pearls can be
collected. Further details can be found in section 2 of his paper.
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Originality of Our Problem

Tejada proved the problem of collecting objects in a 3D grid is
NP-complete.

We prove a better claim in three dimensions, that the problem of pass
covering the whole grid is NP-complete.
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Definitions

Definition

The grid is the entire 3D object constructed in this section.

A board is one of the m × n layers.

The particle is the 1× 1× 1 “maximal sliding agent.”

A block is a 1× 1× 1 occupied space.

A square is a 1× 1× 1 unoccupied space.

Definition (Polynomial Time Reduction)

We say there is a polynomial time reduction from A to B if

A
f

=⇒ B.

Then write A ≤m B. If B is ‘easy’ then so is A. Therefore, if A is hard
then so is B.
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Membership in NP

Movement graph representation H, constructed in O(N2d) time.

From any location, particle can reach v = O(Nd) possible vertices in
H.

Takes O(v) moves to get to any vertex from any vertex.

If every square can be reached, takes O(v2) = O(N2d) time to check
it. Thus game is in NP.
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3-SAT Reduction

The 3-SAT problem asks whether or not it is possible to find a set of
assignments true or false for each variable vi . This problem is NP-hard.

(v1 ∨ v2 ∨ v3)︸ ︷︷ ︸
clause 1

∧ (v1 ∨ v2 ∨ v3)︸ ︷︷ ︸
clause 2

=⇒ some Roller Splat! grid.

This gives
3-SAT ≤ Roller Splat!

Idea for construction is that for each variable, the paintball goes down
two selection paths of true or false.

Each clause is associated with a special clause square that can
only be reached by certain variable paths.
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VTA and PC Traversal

Definition (VTA Traversal)

The variable truth assignment (VTA) traversal is the process of assigning
truths (either true or false, both not both) to each variable in the 3-SAT
instance.

Definition (PC Traversal)

The pass coverage (PC) traversal is is the process of passing through all
non-essential (specifically non-clause) squares after the VTA traversal.

The first three gadgets we will show later are for the VTA traversal,
while the later three are for details in the PC traversal.
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High Level Overview

For 3-SAT instance (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ v3).
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Layers Intro

Figure: The order/orientation of the layers. Top and bottom cover layers not
shown.
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Variable + Clause Gadget

Figure: The true/false selections match
the true/false selections in the layer
above (right diagram).

Figure: The clause gadget.
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Clause Gadget

Gadget for clause (v1 ∨ v2 ∨ v3).

Figure: Both layers of the clause gadget. By design, after passing through
the yellow clause square the particle will continue on the designated path.
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Clause Wall Gadget

Figure: The clause wall gadget. Each cell is a clause gadget, and the wall is solid
except for discrete holes for traversal.
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Traversal Gadget

Figure: The traversal gadget, with the particle beginning in the top left square.
The arrows show that every square in an 8-square-long section can be traversed
by placing four blocks as shown in the figure.
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Drop-Down Gadget

Figure: Example of drop-down gadgets
within a layer.

Figure: Cross section of drop-down
gadgets, showing all nine layers.
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Wall Gadgets

Figure: Type I wall gadget,
for transferring between
vertical and horizontal
traversal gadgets.

Figure: Type II wall
gadget, for passing
through squares that are
blocked off by blocks in
the middle of the board.

Figure: Type III wall
gadget, for passing through
squares that lie at the
intersection of an upward
between-layers movement
and downward movement
in VTA traversal.
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Layers Revisited

Construction for (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ v3).
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Cover Layers

The cover layers sandwich the layers just shown and prevent the particle
from escaping the grid.
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Drop-Down Layer
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Slab II Layer
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Main II Layer
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Main Layer
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Slab I Layer
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Variable Layer
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Ditch Layer
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3-SAT Reduction Conclusion

Note that this construction can be extended to more clauses and
variables.

Each clause will only have three variables so the construction will look
similar.

We have shown now that this problem is both in NP and NP-hard, so
it is NP-complete.

Sebastian Zhu, William Yue, Vincent Fan Complexity of Generalized Roller Splat! October 26, 2019 36 / 39



Conclusion

Explored the recurring ice-sliding motif

Provided implementations to solve all 4 2-D variants in Polynomial
Time

Constructed a novel reduction from 3-SAT to show that the higher
dimensional case of Pass Coverage is NP-complete.

Future research may involve certain combinatorial problems, other
variants of the game (with multiple agents or pushable blocks). More
complex movement patterns can also be explored if the rules of the
board are changed.
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