Shor's Algorithm and the Period Finding Problem

Sebastian Zhu, William Yue, Vincent Fan

December 10, 2019 MIT PRIMES

Agenda

(1) Introduction

(2) Period Finding

(3) Quantum Circuits

(4) The Quantum Fourier Transform
(5) Shor's Algorithm

IIIT

Motivation

- Modern day cryptosystems rely on problems that are difficult to solve.
- One common cryptosystem is RSA (Rivest-Shamir-Adleman) which relies on the difficult problem of factoring a composite number N.
- Classical algorithms can factor with runtimes of $2(\log N)^{\alpha}$, where $\alpha \approx \frac{1}{3}$, which is exponential in the input size $\log N$.
- A quantum algorithm like Shor's Algorithm can factor a composite number N in $\approx(\log N)^{2}$ steps, which is polynomial in the input size $n=\log N$.

Agenda

(1) Introduction

(2) Period Finding

(3) Quantum Circuits

(4) The Quantum Fourier Transform
(5) Shor's Algorithm

IIIT

Reduction to Period-Finding

Suppose we are trying to factor odd N which is not a prime power.

- Randomly choose $x<N$ coprime to N (Euclidean Algorithm).
- Now $x \in \mathbb{Z}_{N}^{*}$, so consider it's order r.
- In particular, this is the period of the sequence

$$
1=x^{0} \quad(\bmod N), x^{1} \quad(\bmod N), x^{2} \quad(\bmod N), \ldots
$$

Reduction to Period-Finding

Fact

With probability $\geq 1 / 2$, the period r is even and $x^{r / 2}-1$ and $x^{r / 2}+1$ are not multiples of N.

Pick multiple x until we get a valid r. Then,

$$
x^{r}-1 \equiv 0 \quad(\bmod N) \Longrightarrow\left(x^{r / 2}-1\right)\left(x^{r / 2}+1\right) \equiv 0 \quad(\bmod N)
$$

Compute $\operatorname{gcd}\left(x^{r / 2} \pm 1, N\right)$ for non-trivial factors of N.

The crux of this algorithm relies on being able to find the period r.
We can do this using quantum computers.

Agenda

(1) Introduction

(2) Period Finding

(3) Quantum Circuits
(4) The Quantum Fourier Transform
(5) Shor's Algorithm

IIIT
ك:

Qubits

- Classical bit: $|0\rangle$ or $|1\rangle$.
- Qubit is a superposition:

$$
|\phi\rangle=x_{0}|0\rangle+x_{1}|1\rangle \in \mathbb{C}^{2}
$$

$x_{i} \in \mathbb{C}$ and $\sum\left|x_{i}\right|^{2}=1$.

- Multiple qubit system is tensor product space: two-qubit system has bases $|0\rangle \otimes|0\rangle,|1\rangle \otimes|0\rangle,|0\rangle \otimes|1\rangle,|1\rangle \otimes|1\rangle$. Abbreviate $|1\rangle \otimes|0\rangle$ as $|1\rangle|0\rangle$ or even $|10\rangle$ or $|2\rangle$
- n qubit system:

$$
x_{0}|0\rangle+x_{1}|1\rangle+\cdots+x_{N-1}|N-1\rangle \text { with } \sum\left|x_{i}\right|^{2}=1
$$

where $N=2^{n}$.

Measurement and Entanglement

We cannot see superpositions, only measure them. When you measure a qubit system $|\phi\rangle$, we will see a classical state $|j\rangle$, each with probability $\left|x_{j}\right|^{2}$. Then $\sum\left|x_{j}\right|^{2}=1$ is good.

2-qubit state EPR Pair (Einstein, Podolsky, Rosen):

$$
\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle .
$$

Measuring the first qubit collapses state and forces second qubit. This state is called entangled.

Unitary Transformations

Instead of measuring a qubit state, we can also apply transformations to send

$$
\left[|\phi\rangle=\sum_{i=0}^{N-1} x_{i}|i\rangle\right] \mapsto\left[|\psi\rangle=\sum_{i=0}^{N-1} y_{i}|i\rangle\right] .
$$

Quantum mechanics only allows linear transformations, so we can view this transformation as multiplication by a unitary matrix U :

$$
U\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{N-1}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{N-1}
\end{array}\right)
$$

The matrix U must be unitary to preserve the norm of 1 . This process is reversable by U^{-1}, unlike measurement.

One-Qubit Quantum Gates

Call unitary matrices on qubits gates, analogous to classical AND,OR,NOT.

On one qubit, consider

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

X is a bitflip gate which switches the coefficients of $|0\rangle$ and $|1\rangle$, where Z is phaseflip which switches the sign of $|1\rangle$. Another important gate is

$$
R_{\theta}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right),
$$

the phase gate which rotates the phase of the $|1\rangle$ state by angle $\theta_{\text {|lliii }}$

The Hadamard Transform

Hadamard gate:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

This maps $|0\rangle$ to $\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$, the state which has equal probability of observing $|0\rangle$ or $|1\rangle$. However, if we apply the Hadamard again, we get

$$
H\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)=\frac{1}{\sqrt{2}} H|0\rangle+\frac{1}{\sqrt{2}} H|1\rangle=|0\rangle!
$$

Here, we see an example of interference, as the $|1\rangle$ cancels out.

Controlled Gates

CNOT gate:

$$
\mathrm{CNOT}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Performs bitflip X if first qubit is $|1\rangle$, nothing if first qubit is $|0\rangle$. Controlled-U gate:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & U_{11} & U_{12} \\
0 & 0 & U_{21} & U_{22}
\end{array}\right)
$$

The Circuit Model

A quantum circuit generalizes the idea of classical circuits, replacing AND, OR, NOT gates with quantum linear transformation gates. We will construct a circuit for Shor's Algorithm that will allow us to find the period r.

Agenda

(1) Introduction

(2) Period Finding
(3) Quantum Circuits
(4) The Quantum Fourier Transform
(5) Shor's Algorithm

Iliit
ת:Till

Fourier Transforms

(Note: here specifically $N=2^{n}$ is a power of two.)
Classical (Discrete) Fourier Transform: maps vector $\left(x_{0}, x_{1}, \ldots, x_{N-1}\right) \in \mathbb{C}^{N}$ to $\left(y_{0}, y_{1}, \ldots, y_{N-1}\right) \in \mathbb{C}^{N}$ by the rule

$$
y_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} \omega_{N}^{-j k}
$$

where $\omega_{N}=e^{\frac{2 \pi i}{N}}$ is an N th root of unity.
Quantum Fourier Transform (QFT): maps quantum state $|x\rangle=\sum_{j=0}^{N-1} x_{j}|j\rangle$ to the quantum state $\sum_{j=0}^{N-1} y_{j}|j\rangle$ by the rule

$$
y_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} \omega_{N}^{j k}
$$

where $\omega_{N}=e^{\frac{2 \pi i}{N}}$ is an N th root of unity.

QFT

If $|x\rangle$ is a basis state, then QFT can also be expressed as

$$
U_{Q F T}(|x\rangle)=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \omega_{N}^{x j}|j\rangle
$$

Since QFT (specifically F_{N}) is a quantum operation expressible by the unitary matrix

$$
\frac{1}{\sqrt{N}}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & \omega_{N} & \omega_{N}^{2} & \omega_{N}^{3} & \ldots & \omega_{N}^{N-1} \\
1 & \omega_{N}^{2} & \omega_{N}^{4} & \omega_{N}^{6} & \ldots & \omega_{N}^{2(N-1)} \\
1 & \omega_{N}^{3} & \omega_{N}^{6} & \omega_{N}^{9} & \ldots & \omega_{N}^{3(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \omega_{N}^{3(N-1)} & \ldots & \omega_{N}^{(N-1)(N-1)}
\end{array}\right]
$$

it can also be viewed as a quantum gate.

QFT Circuit Implementation

Can put QFT in a form that is implementable by a quantum circuit:

$$
\begin{aligned}
U_{Q F T}(|x\rangle) & =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i j x / 2^{n}}|j\rangle \\
& =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i\left(\sum_{\ell=1}^{n} j_{\ell} 2^{-\ell}\right) x}\left|j_{1} j_{2} \ldots j_{n}\right\rangle \\
& =\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \prod_{\ell=1}^{n} e^{2 \pi i j_{\ell} x / 2^{\ell}}\left|j_{1} j_{2} \ldots j_{n}\right\rangle \\
& =\bigotimes_{\ell=1}^{n} \frac{1}{\sqrt{2}}\left(|0\rangle+e^{2 \pi i x / 2^{\ell}}|1\rangle\right) .
\end{aligned}
$$

Agenda

(1) Introduction

(2) Period Finding

(3) Quantum Circuits
(4) The Quantum Fourier Transform
(5) Shor's Algorithm

IIIT
ك:

The Period-Finding Problem

Recall that we are trying to solve the following problem to break RSA:

Problem

Given some function $f: \mathbb{N} \rightarrow\{0,1, \ldots, N-1\}$ with period $r(f(a)=f(b)$ if $a \equiv b(\bmod r))$, find r.

- Suppose we are given a machine (a unitary matrix) that maps $|a\rangle\left|0^{n}\right\rangle \mapsto|a\rangle|f(a)\rangle$.
- Idea is to pick $2^{\ell}=q \in\left(N^{2}, 2 N^{2}\right]$ and evaluate $f(0), f(1), \ldots, f(q-1)$.
- Now use QFT to separate the frequencies and determine the period.

Overview of Circuit

(1) We begin with a register of $(\ell+n)|0\rangle \mathrm{s}$
(2) Apply QFT to the first ℓ
(3) Apply the previously mentioned unitary matrix to all qubits
(9) Make an observation of the last n qubits
(0) Apply a QFT to the first ℓ qubits again, and then make a measurement.

First Two Steps

- The first QFT is applied to $\left|0^{\ell}\right\rangle\left|0^{n}\right\rangle$ yields the superposition $\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle\left|0^{n}\right\rangle$
- Applying the unitary matrix on $\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle\left|0^{n}\right\rangle$ yields the superposition $\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle|f(a)\rangle$

First Observation

- We make an observation of the second register, yielding some value $f(s)$ with $s<r$.
- Thus, the superposition in the first register collapses to only those values that also map to $f(s)$. (Entanglement!)
- Let m be the number of elements in this new superposition of the first register
- The second register has just collapsed to $|f(s)\rangle$. We ignore it from now on.
- In the first we have: $\frac{1}{\sqrt{m}} \sum_{j=0}^{m-1}|j r+s\rangle$.

Second QFT

- Apply another QFT to the first register, yielding $\frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} \frac{1}{\sqrt{q}} \sum_{b=0}^{q-1} e^{2 \pi i \frac{(j r+s) b}{q}}|b\rangle$ which we rearrange into: $\frac{1}{\sqrt{m q}} \sum_{b=0}^{q-1} e^{2 \pi i \frac{s b}{q}}\left(\sum_{j=0}^{m-1}\left(e^{2 \pi i \frac{r b}{q}}\right)^{j}\right)|b\rangle$
- Using the fact that $\sum_{j=0}^{m-1} z^{j}=\frac{1-z^{m}}{1-z}$ for $z \neq 1$, the term

$$
\sum_{j=0}^{m-1}\left(e^{2 \pi i \frac{r b}{q}}\right)^{j}=m \text { or } \frac{1-e^{2 \pi i \frac{m r b}{q}}}{1-e^{2 \pi i \frac{b r}{q}}} .
$$

- We will observe this superposition, and will probabilistically get values of b whose squared amplitude is large.

The Easy Case

- $r \mid q$ and $m=\frac{q}{r}$.
- We observe that $e^{\frac{2 \pi i r b}{q}}=1$ iff $\frac{r b}{q}$ iff b is a multiple of q / r
- Such b will have squared amplitude equal to $\left(\frac{m}{\sqrt{m q}}\right)^{2}=\frac{m}{q}=\frac{1}{r}$ and there are r such b, so they account for the amplitude.
- In this final superposition, we are left with only integer multiples multiples of $\frac{a}{r}$ or in other words, we get b such that $\frac{b}{q}=\frac{c}{r}$ for some c.
- With $O(\log \log N)$ repititions of this procedure, we can recover the value of r.

The Hard Case: $r \nmid q$

- Using the fact that $\left|1-e^{i \theta}\right|=2\left|\sin \frac{\theta}{2}\right|$ we can rewrite the absolute value of the earlier fraction as $\frac{\mid \sin \pi m r b / q) \mid}{\mid \sin \pi r b / q) \mid}$
- This ratio is large for b that are close to integer multiples of $\frac{q}{r}$
- Thus, with high probablity, a measurement of this superposition yields b that satisfies $\left|\frac{b}{q}-\frac{c}{r}\right| \leq \frac{1}{2 q}$
- It's easy to recover the exact value of $\frac{c}{r}$ now, and we recover r just as we did in the easy case.

Limitations and Conclusion

- Need to build a new circuit for every number you want to factor, as well as every random choice of a.
- Still use classical computation for beginning and ending, QC is only applicable for period finding problem
- Take advantage of the superposition of things in a period, and apply QFT.
- Entanglement of the above states is the key to the success of this algorithm.

Acknowledgments

We would like to thank

- MIT PRIMES
- Our Mentor, Chun Hong Lo
- Our Parents

Reference

We consulted Quantum Computing: Lecture Notes by Ronald de Wolf, QuSoft, CWI and University of Amsterdam

