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Abstract. The torus knots are a class of knots generated by or-
dered pairs (p, q) of relatively prime integers, where the (p, q)-torus
knot is the curve defined by a ray of slope p

q emanating from the

origin in the representation of the torus as a square with oppos-
ing sides identified. Furthermore, given a curve K, we can define
the (p, q)-cabling of K to be the (p, q)-torus knot living on an em-
bedding of the torus which follows K, as opposed to the standard
embedding of the torus which follows S1 in R3.

We show that for all p and q � p, there exists a curve in the
isotopy class of the (p, q)-torus knot whose supremal ratio of arc
length to Euclidean distance, called the distortion of the curve, is
bounded above by 7q

log(q) , and additionally show that this bound

holds for the (p, q)-cabling of any knot. This extends a result of
Studer establishing sublinear upper bounds for the distortion of
the (2, q)−torus knots.

1. Introduction

We will be studying the distortion of cabled knots. The distortion
δ(γ) of a rectifiable simple closed curve γ ⊂ Rn is defined as

δ(γ) = sup
u,v∈γ
u6=v

(
dγ(u, v)

|u− v|

)
where dγ(u, v) is the shortest arc length between u and v along γ. The
distortion is the supremal arc length to distance ratio over γ. To extend
this to a knot K, we define δ(K) to be the infimal distortion over all
representatives of the isotopy class of K.

This distortion is difficult to compute exactly, and not known for any
knot except for the unknot. In [4], Gromov shows that the distortion
of any knot is at least π

2
, realized by the standard embedding of the

unknot. In [2], Denne and Sullivan showed that all other knots have
distortion at least 5π

3
, but even for the trefoil knot, perhaps the simplest

non-trivial knot, computational evidence suggests that the distortion
is around 10.7. In [3], Gromov asked whether there exist knots with
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arbitrarily large distortion; for example, does every knot have a rep-
resentative γ with δ(γ) < 100? This problem was open for 30 years,
until in [6], John Pardon demonstrated the existence of highly distorted
knots, showing that for the (p, q)-torus knot Tp,q

δ(Tp,q) >
1

160
min(p, q).

As such,

lim
n→∞

δ(Tn,n+1) ≥ lim
n→∞

1

160
min(n, n+ 1) = lim

n→∞

n

160
=∞.

Pardon’s bound also applies to the (p, q)−cabling of any knot. A
cable knot is constructed for some knot K by taking an embedding of
the torus knotted in the shape of K, for instance, the boundary of a
tubular neighborhood of K, and drawing the torus knot Tp,q on this
torus. We denote the resulting knot Kp,q, called the (p, q)-cabling of K.
Observe that if K is the unknot, Tp,q = Kp,q.

It is possible this lower bound may be improved substantially, as it
seems likely that even for fixed p, δ(Tp,q) goes to infinity as q increases.
Currently, there is no known way to show this sort of lower bound, and
in [5] Gromov and Guth conjectured that δ(Tp,q) ∼ max(p, q). A few
years ago in [7], Studer gave a better upper bound in the case p = 2,
showing that

δ(T2,q) <
7q

log(q)

for q ≥ 50 by packing the crossings of the knot into spirals of small
diameter with relatively low distortion.

Our result is a generalization of Studer’s construction to all p. More
precisely, we prove the following theorem.

Theorem 1. For any knot K, and any p ∈ N, there exists Q depending
on p and K so that for q ≥ Q with gcd(p, q) = 1

δ(Kp,q) <
7q

log(q)
.

With this bound, a few things are apparent. This result has room for
improvement, improving the bound on Q and improving the constant
7, as well as perhaps improving further sublinear bounds. These may
be worth looking into, as it seems as if the distortion of the spirals may
be slightly decreased in all these cases to decrease the bound itself,
though this may increase the bound on q beyond what it is now.



UPPER BOUND ON THE DISTORTION OF CABLED KNOTS 3

2. Acknowledgements

I would like to thank my mentor Luis Kumanduri for discussing this
problem with me, as well as Dr. Tanya Khovanova, Dr. Slava Gerovitch,
and the MIT PRIMES-USA program for allowing me to conduct this
research. Their continued support has been invaluable to this project.

3. Construction

We begin by defining key terms, namely distortion, Tp,q, and Kp,q.

Definition 1. Given a curve γ ⊂ Rn, we define the distortion of γ to
be

δ(γ) = sup
u,v∈γ

dγ(u, v)

|u− v|
where dγ(u, v) is the arc length of γ from u to v. For a knot K, the
distortion is defined as the infimal distortion over all curves in the
isotopy class of K.

Definition 2. The (p, q)-torus knot, denoted Tp,q, is the knot living
on the surface of the torus whose standard embedding is given by the
parametrization

x = (cos(qθ) + 2) cos(pθ)

y = (cos(qθ) + 2) sin(pθ)

z = − sin(qθ)

for 0 ≤ θ < 2π.

Definition 3. Given a tame knot K, γ be an embedding of K, and TK
an extension of γ to an embedding of the solid torus S1×D2. Then the
(p, q)−cabling of K, denoted Kp,q, is the copy of Tp,q on the torus TK .
Essentially, Kp,q is a copy of Tp,q which follows K as its central curve.
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In [7] Studer constructs a low-distortion embedding of T2,q by using
a logarithmic spiral S that is the image of

φ : [0, πq]→ R3, φ(s) = e
s log(q)
2πq (cos(s), 0, sin(s)).

Figure 1: The spiral for q = 5.

This has radii ranging from 1 to
√
q, as seen in Figure 1 and we claim

it has distortion less than 7q
log(q)

, as corollary of the following lemma.

Lemma 1. The distortion of φ(s) = eks(cos(s), 0, sin(s)), a logarith-

mic spiral, is at most
√
1+k2

k
.

Proof. We wish to show that for any two points u, v on the spiral,

d(u, v)

|u− v|
≤
√

1 + k2

k
,

where d is the distance along the curve from u to v. To see this, we
represent the points u, v as φ(a), φ(b). Then, we compute arc length
via integral to get:

d(u, v) =

∫ b

a

√
|φ(s)|2 + |φ′(s)|2ds

=

∫ b

a

√
e2ks + k2e2ksds

=

√
1 + k2

k
(ekb − eka).
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We can also bound the distance |u − v| from below by |u| − |v| =
ekb − eka. Thus,

d(u, v)

|u− v|
=

√
1+k2

k
(ekb − eka)
|u− v|

≤
√
1+k2

k
(ekb − eka)

ekb − eka
=

√
1 + k2

k
.

�

In the case of this particular spiral, k = log(q)
2πq

. This value for k will

be used throughout. So, by the lemma, the distortion of the spiral is
at most

√
1 + k2

k
=

2πq

log(q)

√
1 +

(
log(q)

2πq

)2

<

(
2π

√
1 +

1

4π2

)
q

log(q)

<
7q

log(q)
.

To complete the embedding, Studer connects the ends of this spiral
with a piecewise linear segment that passes through the center of the
spiral on its way around. Since the spiral has diameter

√
q, this segment

can stay far away from the spiral while maintaining a length sublinear
in q, allowing for its contribution to the distortion to occur at only a
couple of key points.

For p > 2, it is natural to generalize this by packing all the crossings
of the (p, q)-torus knot into p − 1 concentric spirals. The parameteri-
zation used is, for 1 ≤ n ≤ p− 1,

φn :

[
0,

2πq

p

]
→ R3, φn(s) = nq

n−1
p e

s log(q)
2πq (cos(s), 0, sin(s)).

The same computation shows that these individual spirals have dis-
tortion less than 7q

log(q)
.

Lemma 2. The total length of the spirals is at most (p− 1)q
p−1
p

√
1+k2

k
.
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Proof. To see this, we first compute the length of φn as∫ 2πq
p

0

√
(nq

n−1
p eks)2 + k2(nq

n−1
p eks)2ds

=

∫ 2πq
p

0

nq
n−1
p eks

√
1 + k2ds

= nq
n−1
p e

log(q)
2πq

s|
2πq
p

0

√
1 + k2

k

= nq
n−1
p (q

1
p − 1)

√
1 + k2

k
.

So, the length of all the spirals together is
p−1∑
n=1

nq
n−1
p (q

1
p − 1)

√
1 + k2

k

=

(
p−1∑
n=1

nq
n
p −

p−2∑
n=0

(n+ 1)q
n
p

) √
1 + k2

k

<

(
p−1∑
n=1

nq
n
p −

p−2∑
n=1

nq
n
p

) √
1 + k2

k

= (p− 1)q
p−1
p

√
1 + k2

k
.

�

Thus, so long as the connecting pieces have length proportional to

q
p−1
p , we may write the total length of the curve as at most

(p− 1)q
p−1
p

√
1 + k2

k
+ Cq

p−1
p .

So long as points u, v on the curve are at least (p − 1)q
p−1
p apart,

the distortion they cause is at most a constant term above the bound
given. Thus, we would like to keep the connecting pieces abiding to
this length, while also remaining distant enough from the spirals to
not contribute to the distortion for a point on a connector and a point
on a spiral. This is possible due to the diameter of the spirals being
sublinear in q.

To connect the spirals, we construct the following segment: Starting
from the end of the kth spiral for 1 ≤ k < p−1, form a segment of length
(2k+2)D perpendicular to the xz-plane in the −y direction. Next, take
a straight line segment to the point ((2k+ 2)D,−(2k+ 2)D, 0). Then,
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take a line segment completely in the +y direction of length (4k+6)D.
Next, travel in the −x direction until at the same x-coordinate as the
start of the next spiral. Add on a semicircular arc of radius (2k + 2)D
going into the −z direction, which will end at z = 0, y = 2D. Finally,
complete the connection to the next spiral with a segment of length 2D
in the +y connection, resulting in connectors resembling the example in
Figure 2. Note that this causes the connectors to maintain a distance
of more than D from the spirals outside of the segments going to the
ends of spirals at the start and end, and from each other in the same
circumstances in addition to the semicircular arcs.

Figure 2: First connector for T3,7.

However, the connector from the final spiral to the first still remains.
For this, we have k = p − 1. As before, begin with a perpendicular
segment of length (2k+ 2)D in the −y direction. Then, take a straight
line segment to the point (−2D,−(2k + 2)D, 0), followed by a line
segment in the +y direction of length (2k + 4)D, ending at the point
(−2D, 2D, 0). Then go straight to the point (0, 2D, 0), and go in the +y
direction to (0,−2D, 0). After, go straight to the point (2D,−2D, 0),
then straight to the point (2D, 4D, 0), then straight to (1, 4D, 0), and
finally take a straight segment of length 4D to the start of the first
spiral, resulting in the connector present in Figure 3. Note that this
connector stays completely away from the other connectors besides
again the perpendicular segments, but does come to a distance 1 from
itself at distant points, in particular when passing through the middle
of the spirals compared to the final connector.
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Figure 3: Second connector for T3,7.

In the case of a cabling of a knot K, we keep the perpendicular
segments and the semicircular arcs. Then, consider a embedding T
of the torus knotted in the shape of K such that the inner radius is
pD. To get the connectors, we move the spiral construction inside of
T , and then connect the ends of the perpendicular segments to the
corresponding semicircles while the connector goes along T.

We note that the interior of T is large enough that we may space the
connectors 2D apart, and 2D away from the spirals. Finally, by keeping
the connectors relatively smooth, we ensure that each has length still
sublinear in q.

Observation. These connectors will have a total length of Cq
p−1
p for

some C constant with respect to q. We will use C in computations
when this constant arises.

Lemma 3. The described curve is an embedding of Kp,q.

Proof. To see that this is indeed a embedding of Kp,q, we may begin
with the standard embedding. Then, we may twist the strands so that
all of the windings occur in a short section of the embedded torus, with
the strands going straight around the torus besides this one region, as
in Figure 4.



UPPER BOUND ON THE DISTORTION OF CABLED KNOTS 9

Figure 4: The first step for T3,7.

Then, we may label the strands going into this section from 1 to p.
Within the section with all of the windings, each of these strands may
be viewed as forming spirals of equal radius. We may expand these
radii in the order of the labellings so that the radius of the spiral from
strand n is larger than the radii of all the earlier strands.

Figure 5: The next step for T3,7.

We then may flatten out the spiral from strand 1, as all of the other
spirals are outside of it at this point, giving us the central connector
from the last spiral to the first, like in Figure 5. Finally, for each
remaining spiral, we may have the radius slightly increase as the spiral
goes on, so that we can compress it fully into the single plane used in
the given embedding. This results in the curve described here, showing
that it is equivalent to Kp,q.

�

4. Proof of Sublinear Distortion Bound

Given this embedding of Kp,q, we would like to show that its dis-
tortion is sublinear in q. Since the distortion of Kp,q is infimal over
all its embeddings, showing the bound in this one case will prove the
distortion bound for Kp,q.
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Given the parametrization, we may compute for pairs of points u, v
the ratio of the distance along the curve to Euclidean distance, and
show that the bound holds regardless of the two points.

For this, we break up the computations into separate cases. There
are 3 relevant cases: points both on spirals, having one point on a spiral
and one on a connector, and points both on connectors.

Case 1. Both points lie on spirals.

First, consider points u, v with u ∈ φn, v ∈ φm, n > m. Then for
some a, b ∈ [0, 2πq

p
],

u = φn(a) = nq
n−1
p e

a log(q)
2πq (cos(a), 0, sin(a)),

v = φm(b) = mq
m−1
p e

b log(q)
2πq (cos(b), 0, sin(b)).

Thus, we can compute that

d(u, v)

|u− v|
≤
n
√
1+k2

k
q
n−1
p eka−m

√
1+k2

k
q
m−1
p ekb+ Cq

p−1
p

nq
n−1
p eka −mq

m−1
p ekb

≤
√

1 + k2

k
+ Cq

p−1−(n−m)
p .

Note that for sufficiently large q, Cq
p−1−(n−m)

p �
√
1+k2

k
, so remem-

bering k = log(q)
2πq

, the bound 7q
log(q)

holds in the limit. We may also

extend this computation to include the distortion between a point on
the spiral and the origin, which lies on the connection from the last
spiral to the first, through setting m = 0.

Case 2. One point lies on a spiral, and one on a connector.

Because of where the connectors are at least a distance D apart, we
may simplify this to the second point lying on one of the perpendicular
segments at the end of a connector. For one point u on spiral φn, and a
specific perpendicular segment that intersects the xz-plane at a point
w, we may parameterize any point v on the segment by its distance b
from the plane of the spirals. Denote the distance |u − v| = a. Then,
since the line segment from u to w is perpendicular to the segment
from w to v, we get that |u− w| =

√
a2 + b2. Since the distance from

u to v is a, and we have already computed that the distortion caused
by points on the spirals (or the origin, in the case of v lying on the

segment passing through the origin) is at most
√
1+k2

k
+Cq

p−1
p , we know

the distance along the curve from u to v is at most a(
√
1+k2

k
+ Cq

p−1
p ).
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Thus, we can compute:

d(u,w)

|u− w|
≤ d(u, v) + d(v, w)√

a2 + b2

≤
a(
√
1+k2

k
+ Cq

p−1
p )

√
a2 + b2

+
b√

b2 + a2

≤
√

1 + k2

k
+ Cq

p−1
p + 1.

Again, the terms besides
√
1+k2

k
become negligible in the limit, and

the bound of 7q
log(q)

again holds.

Case 3. Both points lie on connectors.

For points u, v both on connectors, we need only consider the case
where the points lie on the perpendicular segments near the spirals, as

in all other cases, the spirals are more than (p− 1)q
p−1
p apart.

Between u, v, the only distance along the curve not on a connector
would be due to spirals. To do this, let a and b be the projections of
u and v respectively onto the xz-plane. Then, the distance along the
spirals is at most the length of a spiral from a to b, as such a spiral
would contain all the ones along the curve between the two points. Let
θa, θb be such that ekθa = |a|, and ekθb = |b|. Then, the length of this
spiral would be ∫ θb

θa

√
(ekθ)2 + (kekθ)2dθ

=

√
1 + k2

k
(ekθb − ekθa)

=

√
1 + k2

k
(|b| − |a|).

Also, note that if the points are on different segments (the only
interesting case, as otherwise the distortion is at most π

2
due to the

semicircle), the Euclidean distance is at least 1. Thus, for large enough
q, the distortion is bounded above by

(|b| − |a|)
√
1+k2

k
+ Cq

p−1
p

|b| − |a|

<

√
1 + k2

k
+ Cq

p−1
p

<
7q

log(q)
.
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However, there is one case in which the distortion between points
on the same connector may be greater. On the final connector from
the last spiral to the first, there are points as close as distance 1 apart;
however, since there are no spirals between, the same inequality as
above holds with the first term disappearing.

As the bound holds in all cases, this embedding of Kp,q has distortion
bounded above by 7q

log(q)
if q is sufficiently large and K and p are fixed.

5. Future Work

One thing that comes to mind in relation to the distortion of knots
is the definition of distortion itself. In particular, the use of supremum
instead of some kind of averaging seems somewhat odd. One may try
and define an average distortion of a curve S by something of the form

1

`(S)2

 ∫ ∫
(u,v)∈S2

(
dS(u, v)

|u− v|

)p
dudv


1
p

for a scaling factor p, in the style of the Lp norms, noting that for a
fixed curve, Gromov’s supremal distortion will be the limit of these
p-distortions as p goes to infinity.

However, taking the infimal average distortion over the isotopy class
is relatively uninteresting. Because it averages over the entire embed-
ding, by simply increasing the length of the lower-distortion arcs, we
can decrease the average distortion to essentially that of a circle, a
constant value.

One potential workaround for this issue would be to place somewhat
restrictive geometric constraints on the considered embeddings to avoid
large circles creating a constant distortion. Finding an approach with
a balance between a strong definition and a computable value is likely
to be some combination of different types of restrictions, and since the
average distortion for any curve is necessarily bounded above by its
supremal distortion, may induce new lower bounds.
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