
Byzantine Broadcast with
Dishonest Majority

Ezra Gordon under Jun Wan

PROBLEM

Byzantine Broadcast Background→IDEAL
Byzantine Generals are trying to agree on whether to go forward or retreat

They need a way to reach consensus

GO

Byzantine Generals are trying to agree on whether to go forward or retreat

They need a way to reach consensus, but Generals may be spies or corrupted

Byzantine Broadcast Background→FLAWED

GO?

Byzantine Broadcast Background→COMPLICATED
What is a “leader”? → Random, origin of message

They need a way to reach consensus, but Generals may be spies or corrupted

11 Honest
7 Corrupt

Byzantine Broadcast Background→COMPLICATED

11 Honest
6 Corrupt
11 Corrupt
6 Honest

Agreement from:
[# Corrupt Users] + 1

Agreement from:
[All users]

Majority is
meaningless

Formal Problem Statement:
Given...

1. Honest users all commit on a message
m if the leader is honest (termination)

2. Honest users never commit on m’≠m, if
a different honest user has already
committed to m (consistency)

Given...

1. Honest users all output a message if the
leader is honest (termination)

2. Honest users never output different
messages (consistency)

SOLUTION

Users record
who thinks who is corrupted

Honest users stay
connected

Trust graphs are distinct

Key Concept: Trust Graphs

4 Honest
1 Corrupt Kanye

Kim

● Gives a way to remove/ignore corrupt users:
○ Within x rounds of communicating, users always receive messages from other users that are

distance x away on their trust graphs

Therefore...

○ Proving limitations of the trust graphs proves upper bounds for communication requirements

What’s the Point of Keeping Trust Graphs?

But I’m your
friend!

Trust graph diameter upper bound (d)=

How each part of our protocol operates:

Gossip(sender, message, rounds)

Key Concept: The Gossip Function

Kim
GO!!

G
O

!!

GO!!

G
O

!!

G
O

!!

GO!!

GO!!

G
O

!!

ex:

Gossip(Kim, “GO!!”, 2)

Intuition of Solution
● Three Step protocol:

1. The leader broadcasts a message, users then RELAY messages sent by

the leader

2. Users “VOTE” on what to do (whether the message is “legit”)

3. Users decide/share their choice to COMMIT

● Most users are corrupt, so the steps become more drawn out

Gossip(Leader, messageLeader, d)

Why:

So every user has something to vote on

So users know if the leader “equivocated”

Relay Step
Tuesday

Vote Step

Gossip(Every user i, Vi, d)

and... when i receives Vj: Gossip(i, confirm-Vj, d)

Why:

So every user knows what everyone plans to do

So every user has a record of other users receiving votes

Kim
Kim

Kanye

VK

“Kanye
has VK”

Commit Step

Gossip(Every user i, “commit”, d)

if...

Why:

So users receive confirmation
.... that they should “terminate”

Khloe

Users are carefully instructed such that an honest/flawless leader cannot be
undermined:

- Malicious users cannot impersonate or frame the leader

- Protocol dictates that malicious users must act honest or be removed

Termination

“Phase” PA:

“Phase” PB after PA:

Same round consistency → Voting detects issues

Different round consistency → More complicated

Consistency - Why “vote” for 2d rounds?

A

B

Tuesday!

Wednesday!

Phase PC between them:
B’

Wednesday!

B0

Wednesday!

B0

Wednesday!

A

Tuesday!

This only occurs if:

Users can claim they didn’t receive sufficient information to not commit

B

It seems straightforward, but for rigor

Key insight: B, must not detect issues from
earlier Li or Bi

If B trusts B0, B must have received
“Wednesday” before A committed to
Tuesday, and sent it to A, contradicting the
fact that A committed

Thank you!
Special thanks to:

Jun Wan

Professor Devadas

Professor Gerovitch

PRIMES Program

MIT

Abstract
Byzantine broadcast is a well-studied consensus-building problem in computer
science. A randomly chosen leader must ensure all honest users agree on the
same message. Broadly speaking, most literature/results for this problem rely on
an honest majority of users in the protocol. For this project, worked to improve and
simplify his existing protocol and proof for with sub-linear round complexity under
a dishonest majority of users. We also explored proofs for theoretical minimum
round complexity under a dishonest majority.

Thoughts on organization
-1-3 (more) slides on general byzantine agreement

-1 slide on specific parameters for us

-1-2 slides on trust graphs (maybe another for equivocation)

-2-3 slides explaining the protocol

-2-3 slides outlining the proof

-There is probably something else too

Byzantine Broadcast Background→COMPLICATED

11 Honest
7 Corrupt
11 Honest
6 Corrupt

I’m bad

Users record
who thinks who is corrupted

Key Concept: Trust Graphs

11 Corrupt
6 Honest

Kim

Kanye

Users need to be
connected to 5 others

Revisited Solution
Three Step protocol:

1. A leader broadcasts a message, users then RELAY messages sent by
the leader (d rounds)

a.

2. Users “VOTE” on what to do (2*d rounds)
a.

3. Users decide/share their choice to COMMIT (d rounds)

“Equivocation” &
Users have something to vote on

Assuring common knowledge &
Preventing later disagreements Announcing commitment

Parameters
● In different rounds, users send “signed” messages to one another.

(Signatures can’t be faked)
● Users initially always send updates to everyone
● User X outs themself as malicious to user Y if:

- X doesn’t send a message to Y
- X sends two messages that conflict*
- X otherwise doesn’t follow instructions...

● Users record who “trusts” who in a “trust graph”

