Random Graphs and All-to-All Communication

Linda Chen Mentored by Jun Wan

Graphs and Random Graphs

Graph G = (V, E)

V = set of **vertices**, E = set of **edges**

Degree: number of edges coming out of vertex

Random graph: properties are randomly generated

The Problem

Graphs represent a communication network, vertices represent users

Users exchange messages

All-to-all communication: all users exchange with all other users

How to make communication more efficient and require less cost?

- Cryptocurrency
- Consensus protocols
- etc.

Example of Communication

Goals

Using random graphs: reduce number of exchanges from *n* to *d* * (round #)

<u>Part I</u>: compare different random graph models to reduce **round number**: # of rounds needed to receive all messages

Part II: reduce overall **communication cost**: # of bits received by a user

Part I: Comparison of Random Graph Models

Random graph models:

- Model 1: each edge exists with probability p
- Model 2: graph has total of m edges
- Model 3: each vertex has degree d undirected edges
- Model 4: each vertex has degree d directed edges

Giant Component

Giant component: largest connected component of a graph

Average degree for the giant component to include more than $(1-\varepsilon)n$ vertices...

Previous results:

- Model 1 (probability p): $d > \frac{1 \ln \varepsilon}{1 \varepsilon}$
- Model 3 (d undirected): d > 1

Our results:

- Model 2 (m edges): $d > \frac{2 \ln ((1 \varepsilon)^{1 \varepsilon} \cdot \varepsilon^{\varepsilon})}{\ln (1 2\varepsilon(1 \varepsilon))}$ Model 4 (d directed): $d > 1 + \frac{\varepsilon \ln \varepsilon}{(1 \varepsilon) \ln \varepsilon}$

Giant Component Proof Process

Split the set of *V* vertices into subsets *V* and *V* - *V* is

$$\varepsilon n \le |V'| \le (1-\varepsilon)n$$

Find probability that the two subsets are disconnected

Apply a union bound for all subsets *V*'

Determine what d must be in order for this probability to be negligible

Diameter and Round Number

Diameter longest shortest path between any two vertices of the graph

Diameter = round number

Round *i*: users receive messages from users that are a distance *i* from them

Diameter

For each user to receive...

From 1 to log(n) messages: log(n) rounds

From $\log(n)$ to 0.1n messages: $\log(\frac{0.1n}{\log n})$ rounds

From 0.1n to $(1-\varepsilon)n$ messages: O(1) rounds

Upper bound of diameter =
$$\log n + \log(\frac{0.1n}{\log n}) + O(1)$$

Diameter

Part II: Communication Cost

Communication cost: total number of bits received by a user

Each round, users send to each other an aggregate signature

Consists of message set, signature, and multiset storing components

Aggregates signatures from multiple distinct users into one signature

Aggregate Signatures

Protocol

Randomly generate graph G = (V, E)

n users each start with their own message and signature on that message

For 1 to *k* (round number) rounds, each user...

Exchanges messages with *d* neighbors

Verifies messages using aggregate signature

Updates their current messages and aggregate signature with the new messages received

Communication Cost

Using aggregate signatures, **signature cost** is reduced to (# of rounds) * (degree) * (sig size)

Less than the **message cost**, so we can just focus on the messages when considering communication cost

Communication Cost - Messages

A user's set of messages can be expressed as multisets

Multiset: a modification of a set that can have multiple instances of the same element

User 1's multisets:

Start: {1}

Round 1: {2, 3}

Round 2: {4, 5, 5, 6}

Communication Cost - Messages

Multisets assigned numbers in order of probability of appearing

EX: {1, 2, 3, 4} is assigned a smaller number than {2, 2, 2, 2}

Reduces communication cost: more likely to send smaller numbers (less bits)

Final cost:
$$\frac{|\ln \varepsilon| \, n \log n}{k}$$

k = round number

Communication Cost

Communication Cost

As *n* gets bigger, the ratio between actual cost to theoretical cost gets smaller

Adversaries

Crash model: each user fails with probability *p*

Is similar to original model, but with reduced degree

When generating graph, increase degree by a factor of $\frac{1}{1-p}$

Can still follow original method of assigning numbers to multisets

Open questions - What else can the adversary do?

Conclusion

Found "good" model of random graph: minimizes diameter and maximizes giant component size

We show an all-to-all communication protocol with:

$$\frac{\log n + \log(\frac{0.1n}{\log n}) + O(1) \text{ # of rounds}}{\frac{|\ln \varepsilon| n \log n}{k}} \text{ communication complexity}$$

In contrast, previous work does:

 $|\ln \varepsilon| n \log n$ communication complexity

Thank you!

Questions?