
Achieving Fast Fully 
Homomorphic Encryption 
with Graph Reductions

Walden Yan and Sanath Govindarajan
Mentor: William Moses



What is fully homomorphic encryption?
● Support arbitrary computation on encrypted data

Alice (Sender) Eve (Untrusted Receiver)

Encryption
μ → Enc(μ) Computation

Enc(μ)
↓

F′(Enc(μ))
Decryption
F′(Enc(μ)) 

↓
Dec(F′(Enc(μ))) = F(μ)



Potential Applications

● We can send tasks off to someone with a more powerful computer or a better 
algorithm without having to worry about data leaks
○ Filtering email and messages
○ Processing medical data
○ Processing financial data
○ National security



But it is slow

FHE Library

NOT
AND
XOR

XNOR

FHE Function

Enc(μ)
↓

F1(Enc(μ))
↓

F2(F1(Enc(μ)))
↓
⋮
↓

Func′(Enc(μ))



Our Contribution



FHE Pipeline
Program

F(μ)

Encrypted Data Corpus
Enc(μ1), Enc(μ2), ...

Encrypted Outputs
Enc(F(μ1)), Enc(F(μ2)), ...

Function Graph IR

Optimized Encrypted 
Program

F′: Enc(μ) → Enc(F(μ))

Reduce Graph

Schedule & Compile

“Library” Function

Optimized Graph

Lower to Scheme

Halide IR



Function Graph IR



INPUT

OUTPUT

● DAG of binary operations

Function Graphs

3-bit addition



Measuring Graph Efficiency

● Benchmark individual binary operations in the FHE scheme

● In the worst case, the time it takes to run the graph is the sum of the time it 
takes to run each individual operation
○ Could be faster due to parallelism or schedule optimizations

● Theoretically, any scheme can be used

Operation NOT AND XOR XNOR

Runtime (relative to NOT) 1 18.75 38.71 35.72



Graph Reductions

3-bit multiplication

3-bit multiplication
(reduced)



Eliminating Constants and Double NOTs

● Any binary operation taking a constant as an input can be expressed soley in 
terms of the other input
○ XOR(A, 1) == NOT(A)

● NOT(NOT(A)) = A



Optimizing 2-Input Graphs

● Given a graph with two input nodes and some desired outputs, find the best 
graph to compute those outputs

● 2 inputs ⇒ 4 possible sets of inputs ⇒ 16 possible functions ⇒ 65536 unique 
sets of outputs

● Run a DP algorithm to find all the optimal graphs and cache them in a table
● Use the table to find the optimal graph for any situation



Generic Graph Reduction

For all pairs of nodes u and v:

● Define the subgraph S as all nodes that can be calculated from only u and v
○ Approximate with DFS

● Consider node w in S interesting if w is used outside of S or if w is an output of 
the original graph

● Run the 2-input graph algorithm with interesting nodes as desired outputs
● Replace the S with the ideal subgraph

Repeat until graph cannot be reduced further
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Additional Reduction Methods

● Three-node reduction

● Find exact subgraph S by running every possible set of inputs and analyzing 
patterns in node values

● Flag “important” input nodes (ex. sign bits)
○ Try creating separate graphs for when the bit is 0 and when it is 1, then combine with MUX



Scheduling and 
Compiling



Our FHE Scheme

● GSW 2013: leveled fully homomorphic encryption scheme based on LWE [1]
○ Ciphers are matrices, operations are matrix addition & multiplication
○ Requirement for leveled FHE: plaintext μ∈{0,1} at all times

● NOT (μ) = 1 - μ
● AND (μ1 μ2) = μ1 * u2

● XOR (μ1 μ2) = AND (μ1 (!μ2)) + AND ((!μ1) μ2)
● XNOR (μ1 μ2) = AND (μ1 μ2) + AND ((!μ1) (!μ2))

○ Graph optimizations take differing costs of operations into account

● Since all encrypted gates are matrix operations, we can use a tensor 
processing compiler to generate fast code

[1] Gentry, Craig, Sahai, Amit, Waters, Brent 2013



Implementing Fast FHE Operations

● We use Halide, a high-performance image and tensor processing compiler
● Algorithms are separated from schedules

○ Implement FHE operator once
○ Halide can schedule/compile for many architectures (caching differences, 

CPU/GPU, etc)
● Easy parallelization by design (no side effects, etc)



Homomorphic AND in Halide

//Simplified for ease

Halide::Func AND(Halide::Func f1, Halide::Func f2, int matSize) {

    Halide::Var x, y;

    Halide::RDom r(0, matSize);

    Halide::Func multiply_temp;

 

    multiply_temp(x, y) = Halide::Expr((int64_t)0);

    multiply_temp(x, y) += f1(x, r) * f2(r, y); //modular sum in practice

 

    return Flatten(multiply_temp);

}



How We Generate Pipelines

Input Input Input ImageParam ImageParam ImageParam

Output Output Output Realization

Primitives

Public params 
(modulus, size)

Halide compiles this to return a callable function pointer



Compiling a function graph

vector<ImageParam> inputPlaceholders(2 * num_bits);

 

for (int i = 0; i < inputPlaceholders.size(); i++) {

    inputPlaceholders[i] = ImageParam(Int(64), 2);

}

 

Pipeline hpipe = pipelineGen(some_function, inputPlaceholders, N, q); // pipeline 

ready to be scheduled

 

// scheduling here, or use the auto-scheduler

 

hpipe.compile_jit(); // or compile_to_c or any other supported language

Realization rel = hpipe.realize(N, N, Target(), params); // ready to be decrypted



A “Dynamic” Library

● Given an FHE program, see if we’ve already compiled it, if so return/call it
● Otherwise compile a pipeline to compute the operation

○ Moderately slow, but can be reused
● Can either JIT or ahead-of-time compile depending on use case



API



Creating Graphs: Building From Scratch

function_graph fg(3); // 3 input bits

int node1 = fg.addNode(fg.getInput(0), fg.getInput(1), AND_OP);

int node2 = fg.addNode(fg.getInput(2), node1, OR_OP);

fg.defineOutput(0, node2);

reduce(fg); // also has optional flags



Creating Graphs: Using Standard Operations

function_graph fg;

var x(fg, 0, 5); // inputs 0...4

var y(fg, 5, 5); // inputs 5...9

var z(fg, 10, 5); // inputs 10...15

var res = (x + y) / z;

function_graph opGraph = res.realize();



Results



FHE Scheme Benchmarking

O((n lg q)3)



Optimization Benchmarking

3.5 x reduction0.27 ms reduction



Optimization Benchmarking

2.8 x reduction3.5 x reduction



Optimization Benchmarking

17.5 x reduction

ReLU: (|x| + x)  / 2



Conclusion

● A pipeline that speeds up the running of programs with fully homomorphic 
encryption
○ Internal representation that can be optimized with graph reductions
○ Scheduling and compiling homomorphic programs with Halide

● A basic API for easy use of the pipeline
● Demonstrated significant speedups compared to using bare fully 

homomorphic encryption



Future Work

● Adding heuristics to better handle larger function graphs
● Allowing function graphs to incorporate lower level FHE operations
● Adding new primitive gates (ex. MUX)
● Incorporate RLWE to allow faster arithmetic operations
● Improving the API
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