Achieving Fast Fully
Homomorphic Encryption
with Graph Reductions

Walden Yan and Sanath Govindarajan
Mentor: William Moses



What is fully homomorphic encryption?

e Support arbitrary computation on encrypted data
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Potential Applications

e We can send tasks off to someone with a more powerful computer or a better
algorithm without having to worry about data leaks
o Filtering email and messages
o Processing medical data
o Processing financial data
o National security




But it is slow
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Our Contribution
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Function Graph IR



Function Graphs

e DAG of binary operations NPUT

3-bit addition

OUTPUT




Measuring Graph Efficiency

e Benchmark individual binary operations in the FHE scheme

e Inthe worst case, the time it takes to run the graph is the sum of the time it
takes to run each individual operation
o Could be faster due to parallelism or schedule optimizations

e Theoretically, any scheme can be used

Operation NOT AND XOR XNOR

Runtime (relative to NOT) 1 18.75 38.71 35.72




Graph Reductions

3-bit multiplication
(reduced)



Eliminating Constants and Double NOTs

e Any binary operation taking a constant as an input can be expressed soley in
terms of the other input
o XOR(A, 1) == NOT(A)

e NOT(NOT(A)) = A



Optimizing 2-Input Graphs

e Given a graph with two input nodes and some desired outputs, find the best
graph to compute those outputs

e 2 inputs = 4 possible sets of inputs = 16 possible functions = 65536 unique
sets of outputs

e Run a DP algorithm to find all the optimal graphs and cache them in a table

e Use the table to find the optimal graph for any situation



Generic Graph Reduction

For all pairs of nodes u and v:

e Define the subgraph S as all nodes that can be calculated from only u and v
o Approximate with DFS
e Consider node w in S interesting if w is used outside of S or if w is an output of
the original graph
e Run the 2-input graph algorithm with interesting nodes as desired outputs
e Replace the S with the ideal subgraph

Repeat until graph cannot be reduced further



Two-Node Reduction on Full Adder
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Additional Reduction Methods

e Three-node reduction

e Find exact subgraph S by running every possible set of inputs and analyzing
patterns in node values

e Flag “important” input nodes (ex. sign bits)
o  Try creating separate graphs for when the bit is O and when it is 1, then combine with MUX



Scheduling and
Compiling



QOur FHE Scheme

e GSW 2013: leveled fully homomorphic encryption scheme based on LWE [1]

o Ciphers are matrices, operations are matrix addition & multiplication
o Requirement for leveled FHE: plaintext u€{0,1} at all times

NOT (u) =1-u
AND (b 1) = 1y ™ U,
XOR (Y, 1) = AND (u, (Ir,)) + AND (('p,) 1)
XNOR (i, 1) = AND (1, 1,) + AND (1) ()
o  Graph optimizations take differing costs of operations into account
e Since all encrypted gates are matrix operations, we can use a tensor
processing compiler to generate fast code

[1] Gentry, Craig, Sahai, Amit, Waters, Brent 2013
B



Implementing Fast FHE Operations

e We use Halide, a high-performance image and tensor processing compiler
e Algorithms are separated from schedules
o Implement FHE operator once
o Halide can schedule/compile for many architectures (caching differences,
CPU/GPU, etc)
e Easy parallelization by design (no side effects, etc)



Homomorphic AND in Halide

//Simplified for ease

Halide::Func AND(Halide::Func f1, Halide::Func f2, int matSize) {
Halide::Var x, y;
Halide: :RDom r(@, matSize);
Halide: :Func multiply temp;

multiply temp(x, y) = Halide::Expr((int64_t)o);
multiply temp(x, y) += f1(x, r) * f2(r, y); //modular sum in practice

return Flatten(multiply temp);



How We Generate Pipelines

ImageParam ImageParam ImageParam

Input Input Input

Public params
(modulus, size)

Primitives

Output Output Output

Realization

Halide compiles this to return a callable function pointer




Compiling a function graph
vector<ImageParam> inputPlaceholders(2 * num_bits);
for (int i = @; i < inputPlaceholders.size(); i++) {
inputPlaceholders[i] = ImageParam(Int(64), 2);
Pipeline hpipe = pipelineGen(some_function, inputPlaceholders, N, q); // pipeline
ready to be scheduled

// scheduling here, or use the auto-scheduler

hpipe.compile_jit(); // or compile_to_c or any other supported language
Realization rel = hpipe.realize(N, N, Target(), params); // ready to be decrypted



A “Dynamic” Library

e Given an FHE program, see if we've already compiled it, if so return/call it
e Otherwise compile a pipeline to compute the operation

o Moderately slow, but can be reused
e Can either JIT or ahead-of-time compile depending on use case



AP]



Creating Graphs: Building From Scratch

function_graph fg(3); // 3 input bits

int nodel = fg.addNode(fg.getInput(@), fg.getInput(l), AND OP);
int node2 = fg.addNode(fg.getInput(2), nodel, OR _OP);
fg.defineOutput (0@, node2);

reduce(fg); // also has optional flags



Creating Graphs: Using Standard Operations

function_graph fg;

var x(fg, @, 5); // inputs 0...4

var y(fg, 5, 5); // inputs 5...9

var z(fg, 10, 5); // inputs 10...15
var res = (x +vy) / z;

function graph opGraph = res.realize();



Results



FHE Scheme Benchmarking

Runtime vs Modulus Size
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Optimization Benchmarking

Addition Negate
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Optimization Benchmarking

Division Multiplication
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Optimization Benchmarking

RelU
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Conclusion

e A pipeline that speeds up the running of programs with fully homomorphic
encryption
o Internal representation that can be optimized with graph reductions
o Scheduling and compiling homomorphic programs with Halide
e A basic API for easy use of the pipeline
e Demonstrated significant speedups compared to using bare fully
homomorphic encryption



Future Work

Adding heuristics to better handle larger function graphs

Allowing function graphs to incorporate lower level FHE operations
Adding new primitive gates (ex. MUX)

Incorporate RLWE to allow faster arithmetic operations

Improving the API
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