
Privacy-Preserving
Similarity Search Using

Learned Indexes
MIT PRIMES Computer Science Conference

October 20, 2019

By: Patrick Zhang
Mentor: Kyle Hogan

1

Similarity Search
● matches items with similar features to the same user profile

○ each item has a feature vector - a vector of numbers determining certain qualities

2

User profile
<1 , 0 , 2 , ….>

song recommendations

Similarity Search
● Often used for online sites (e-commerce)

○ spotify
○ netflix
○ amazon

Examples of feature vectors for songs:

Year Is pop (genre) Is jazz (genre) length (seconds)

Song 1 2000 1 (yes) 0 (yes) 120

Song 2 2010 0 (no) 1 (yes) 200
3

Why make it private?
● Scenario

○ Client wants to get k song recommendations from Server, to match his profile
○ Both the Client and Server want privacy

■ Client doesn’t want the Server to know the profile (can contain very personal
information)

■ Server doesn’t want the Client to learn the model that gives the song recommendations

4

Similarity Search Algorithm
● Each feature vector is a point on d-dimensional space where d is the size of a

vector
○ Feature vector of song 1: <2000,1,0,120> has 4 dimensions

● k-nearest neighbors = k closest points to a single point
● Higher dimensions make it harder!

○ Map the points of d-dimensions to a 1 dimension using a Hilbert curve
○ Hilbert curve - a single space-filling line through d-dimensions that guarantees that if 2 points

are close in 1 dimension, they will be close in d dimensions

5

Similarity Search Algorithm
● All the items are on a single “sorted” array

○ <Song 1 (10 units) , Song 3 (100 units), Song 5 (101 units),>

● How can we find the index (location) of an item in the sorted vector privately?

6

What are Learned Index Structures
● Data structures to query information

○ we want to find the index of an item in an array

● How are these different from traditional index structures (i.e. Binary Trees)
○ they utilize the patterns in the data for an APPROXIMATE search that is more efficient in terms

speed and memory

7

Creating a Learned Index Structure
● want to approximate the position of a key in a sorted array

○ equivalent to approximating the CDF (cumulative distribution function (CDF)

○ x axis = distance
○ y axis = index

8

Creating a Learned Index Structure
● use linear regression

○ find a line of best fit, x axis is the distance, y value is the position
○ however, there could be too much error

■ the result gives you a bin instead

9

Creating a Learned Index Structure
● within each bin, you find another line of best fit to find the approximate index
● each set of bins is a layer, each bin is represented by the equation of a line:

y=mx+b

10

More layers = more bins = more accurate!

11

Current Protocol (Interactive) - Client Privacy
Client computes and encrypts Hilbert distance for profile [Hv] =

*[] means encrypted

using somewhat homomorphic encryption (+ and * work under encryption i.e [x]*[y]=[xy])

[Hv]

12

Current Protocol (Interactive) - Client Privacy

Server uses line in layer 1 to get [L1] , the encrypted result

m[Hv]+b=[L1]

[L1]

13

Current Protocol (Interactive) - Client Privacy

Client decrypts [L1] to get L1, the index of the bin of layer 2

Finds vector [q] = ([0],...,[1]....[0]), array of [0]’s except for a [1] at index L1

*all the [0] look different so the server can’t tell which is the [1]

[q]

14

Current Protocol (Interactive) - Client Privacy
Server computes [s]=[q][Hv]+[q’]W
= ([w0] , [w1], , [wi-1] , [Hv] , [wi+1],.....)

An array of the x intercepts except for [Hv] at L1
(location of the bin we want)

15

[q’] = ([1],...,[1])-[q] = ([1],....,[0],....,[1])

W = vector of x intercepts for next set of bins (w0,w1,...)
M = vector of slopes for next set of bins (m0,m1,...)
B = vector of y intercepts for next set of bins (b0,b1,...)

*lines for bins are represented as y=mx+b and mw+b=0

Current Protocol (Interactive) - Client Privacy
Server computes [s’]=M[s]+B
= (m0[w0]+b0 , , mi[Hv]+bi, ...,mn[wn]+bn)
= ([0], … , mi[Hv]+bi, …. [0])

Remember mw+b=0
Still the server doesn’t know what L1 is

16

Current Protocol (Interactive) - Client Privacy

Server computes [L2] = sum of [s’] = mi[Hv]+b

[L2]

17

Current Protocol (Interactive) - Client Privacy
● Process is repeated until all layers in the model are processed (the last layer

gives the final approximate index)
○ In the second layer, L2 is used instead of L1

18

Imminent Work (Adding Server Privacy)
● Server adds random number r to every L value (L1,L2..)

○ The Client doesn’t know the actual index of the bins or the final index

● When the Server receives <...>, it rotates the values by r

Example:

L1=1

r = 1

Client get L1+ r =2 and sends: <[0], [0], [1]...>

Server rotates the values left by 1: <[0], [1], [0]...>
19

Future work
● Avoid making the Client compute the feature vector

○ the feature vector is also something that the Server often spends time making
○ we don’t know what features in songs spotify uses to determine similarity

● Decreasing bandwidth
○ the size of [q] can be big since it is equal to the number of bins in each layer, however in

practice it's usually around 10 which is not so bad

● A problem to look into - only finds the index on a sorted array quickly, finding
the k nearest neighbors requires PIR (Private Information Retrieval) - a really
slow process for large databases (grows in speed proportionally to the size of
the database)

20

Other Uses
● Even though similarity search may still be slow overall, privately querying

indices of sorted arrays can be used for other things such as range queries

21

Acknowledgements
● MIT PRIMES

● My mentor: Kyle Hogan

● Assistance from: Sasha Servan-Schreiber and Hanshen Xiao

● My parents
22

