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Similarity Search

e matches items with similar features to the same user profile
o each item has a feature vector - a vector of numbers determining certain qualities

User profile

song recomm




Similarity Search

e Often used for online sites (e-commerce)
o spotify
o netflix
o amazon

Examples of feature vectors for songs:

Year Is pop (genre) Is jazz (genre)
Song 1 2000 1 (yes) 0 (yes)

Song 2 2010 0 (no) 1 (yes)

length (seconds)
120

200



Why make it private?

e Scenario
o Client wants to get k song recommendations from Server, to match his profile
o Both the Client and Server want privacy
m Client doesn’t want the Server to know the profile (can contain very personal
information)
m Server doesn’t want the Client to learn the model that gives the song recommendations



Similarity Search Algorithm

e Each feature vector is a point on d-dimensional space where d is the size of a
vector
o Feature vector of song 1: <2000,1,0,120> has 4 dimensions
e Kk-nearest neighbors = k closest points to a single point
e Higher dimensions make it harder!

o Map the points of d-dimensions to a 1 dimension using a Hilbert curve
o Hilbert curve - a single space-filling line through d-dimensions that guarantees that if 2 points




Similarity Search Algorithm

e All the items are on a single “sorted” array
o <Song 1 (10 units) , Song 3 (100 units), Song 5 (101 units), .......... >

e How can we find the index (location) of an item in the sorted vector privately?



What are Learned Index Structures

e Data structures to query information
o we want to find the index of an item in an array

e How are these different from traditional index structures (i.e. Binary Trees)
o they utilize the patterns in the data for an APPROXIMATE search that is more efficient in terms
speed and memory




Creating a Learned Index Structure

e want to approximate the position of a key in a sorted array
o equivalent to approximating the CDF (cumulative distribution function (CDF)
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Creating a Learned Index Structure

e use linear regression
o find a line of best fit, x axis is the distance, y value is the position
o however, there could be too much error
m the result gives you a bin instead
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Creating a Learned Index Structure

e within each bin, you find another line of best fit to find the approximate index
e each set of bins is a layer, each bin is represented by the equation of a line:
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More layers = more bins = more accurate!
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Current Protocol (Interactive) - Client Privacy

Client computes and encrypts Hilbert distance for profile [Hv] =

*[] means encrypted

using somewhat homomaorphic encryption (+ and * work under encryption i.e [x]*[y]=[xy])

‘ [Hv]
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Current Protocol (Interactive) - Client Privacy

Server uses line in layer 1 to get [L.], the encrypted result

m[Hv]+b=[L.]

‘ [L,]
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Current Protocol (Interactive) - Client Privacy

Client decrypts [L,] to get L,, the index of the bin of layer 2
Finds vector [q] = ([0],...,[1]....[0]), array of [0]'s except for a [1] at index L,

*all the [0] look different so the server can'’t tell which is the [1]

‘ [a]
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Current Protocol (Interactive) - Client Privacy

[a1= ([1].....[10)-[a] = ([1]......[0],....,[1]) Server computes [s]=[q][HV]+[q'TW

W = vector of x intercepts for next set of bins  (wy,w,;,...) B ([WO] ’ [W1]’ Y [WM]  [HV1 [Wi”]’ """ )

M = vector of slopes for next set of bins (my,m,,...)
b

B = vector of y intercepts for next set of bins  (bj,b,,...) An array of the x intercepts except for [Hv] at L1

(location of the bin we want)
*lines for bins are represented as y=mx+b and mw+b=0
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Current Protocol (Interactive) - Client Privacy

Server computes [s']=M[s]+B

= (Mylwl+by , ..., m[HV]+b, ....m [w ]+b )
=([0], ... , m[HV]+b, .... [0])

Remember mw+b=0

Still the server doesn’t know what L1 is

16



Current Protocol (Interactive) - Client Privacy

Server computes [L,] = sum of [s] = m[Hv]+b

‘ [L,]

®ﬁ
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Current Protocol (Interactive) - Client Privacy

e Process is repeated until all layers in the model are processed (the last layer

gives the final approximate index)
o Inthe second layer, L2 is used instead of L1
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Imminent Work (Adding Server Privacy)

e Server adds random number rto every L value (L,,L,..)
o The Client doesn’t know the actual index of the bins or the final index

e \When the Server receives <...>, it rotates the values by r

Example:

Client get L+ r =2 and sends: <[0], [O], [1]...>

Server rotates the values left by 1: <[0], [1], [O]...>
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Future work

e Avoid making the Client compute the feature vector

o the feature vector is also something that the Server often spends time making
o we don’t know what features in songs spotify uses to determine similarity

e Decreasing bandwidth
o the size of [q] can be big since it is equal to the number of bins in each layer, however in
practice it's usually around 10 which is not so bad

e A problem to look into - only finds the index on a sorted array quickly, finding
the k nearest neighbors requires PIR (Private Information Retrieval) - a really
slow process for large databases (grows in speed proportionally to the size of
the database)
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Other Uses

e Even though similarity search may still be slow overall, privately querying
indices of sorted arrays can be used for other things such as range queries
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