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Adversarial Example Background
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Consequences of Adversarial Examples

e Self Driving Cars:
o Accidents can result from the signs with stickers or grafiti
which cause false classifications

e Smart Speakers:
o Audio adversarial examples originating from TV or radio can
maliciously interact with smart home devices (turn on lights,
unlock doors) without the owner’s knowledge




p-norm

e Constrains the amount of noise that an attacker adds

e Forl<p<o, |lal,= (Z a,-”)l:"ﬁ
i=1

e Some special norms
o Hamming Distance: 0-norm
o Euclidean Distance: 2-norm
o Max-norm: «-norm

e These constraints do not work for audio

TEykholt et al.
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Imperceptible Audio Adversarial Examples

e Attackers create imperceptible as] - o S
adversarial examples by utilizing 1 60
auditory masking (frequency L
masking)
e Minimize cost functions that take into 20 I
account imperceptibility and accuracy i o

® These are usually iterative attacks : ,

Ex. l(x,0,y) =|lhet(f(x+0),y)+|a - lg(z,0)] (Carlinietal)
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Current Defenses

e Employ MP3 compression and other techniques to remove all noise below the
masking threshold

o Classifier is not trained on this type of filtered data — low accuracy (especially on benign
inputs)

o Filtering removes important information— even retraining classification network results in low
accuracy

o No provable guarantees
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Certified Robustness



Certified Robustness

e Provides guarantees of robustness of a defense against bounded attacks
using probability theory and statistics for certification

1.09
[0}
Q i
o) Certifiably
3 robust!
% 0.54
o
2
IE:

i 2
O @ &P O

Lecuyer et al.

14



Certified Robustness via Randomized Smoothing

e Add perturbations to the input that exceed the norm-bounded perturbation of
the attacker - nullify the adversarial perturbation up to a certain magnitude

e Add a noise layer in the classifier that randomly samples from gaussian or
laplacian distributions
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Certified Robustness via Randomized Smoothing

e Add perturbations to the input that exceed the norm-bounded perturbation of
the attacker - nullify the adversarial perturbation up to a certain magnitude

e Add a noise layer in the classifier that randomly samples from gaussian or
laplacian distributions
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Applying Randomized Smoothing to Audio

e Only works with norm-bounded attacks (images) — imperceptible audio

adversarial examples are not norm-bounded
e Noise will not be added to the correct parts of the audio (under the masking

threshold)
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Applying Randomized Smoothing to Audio

rks attacks (images) — imperceptible audio
adversarial examples are not norm-bounded
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Applying Randomized Smoothing to Audio

Too much noise




Perturbation Quantification for Audio

e \We constrain randomness added in the same way in which attackers add perturbations
o give scores based threshold and how much attacker exceeds threshold
e Constraint gives basis of how much sound to add to each frequency band
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Perturbation Quantification for Audio

e \We constrain randomness added in the same way in which attackers add perturbations
o give scores based threshold and how much attacker exceeds threshold
e Constraint gives basis of how much sound to add to each frequency band
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Future Work

e Find a concise mathematical bounding for imperceptible audio adversarial

attacks
e Formally prove that proposed method to quantify sound can be used to create

certified defenses
e Implement defense and calculate accuracy on both benign and adversarial

audio
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