Cache-Efficient Parallel Partition Algorithms

Alek Westover

MIT PRIMES

October 20, 2019

THE PARTITION PROBLEM

An unpartitioned array:

THE PARTITION PROBLEM

An unpartitioned array:

ml Pivot

AT AT AT e

| I

I

An array partitioned relative to a pivot value:

”HH.—.HH_HHﬂn”ﬂHHHHHHHHHHHHHHH Pivot

ol R toe

WHAT IS A PARALLEL ALGORITHM?

Fundamental primitive:

Parallel for loop T]me

Parallel-For i from 1 to 4:
Do Xi

WHAT IS A PARALLEL ALGORITHM?

More complicated parallel structures can be made by
combining parallel for loops and recursion.

Time

Tp: TIME TO RUN ON p PROCESSORS

Time

Important extreme cases:

Work: T;
» time to run in serial

» “sum of all work”

Span: T
» time to run on infinitely
many processors
» "“height of the graph”

BOUNDING Tp WITH WORK AND SPAN

Brent’s Theorem: (srent, 74

SN

Take away: Work T; and span T, determine T),.

THE STANDARD PARALLEL PARTITION ALGORITHM
Step Span
Create filtered array O(1)
Compute prefix sums of filtered array O(logn)

Use prefix sums to partition array O(1)

Total work: T1 = O(n)
Total span: T, = O(logn)

THE PROBLEM
Standard Algorithm is slow in practice

» Uses extra memory “bad cache behavior”

» Makes multiple passes over array

Fastest algorithms in practice lack theoretical guarantees
» Lock-based and atomic-variable based algorithms
[Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders, 2017; Philip Heidelberger, Alan
Norton, and John T. Robinson, 1990; Philippas Tsigas and Yi Zhang, 2003]
» The Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

No locks or atomic-variables, but no bound on span

OUR QUESTION

Can we create an algorithm with theoretical
quarantees that is fast in practice?

OUR RESULT
The Smoothed-Striding Algorithm

Key Features:
» linear work and polylogarithmic span
(like the Standard Algorithm)

» fast in practice
(like the Strided Algorithm)

» theoretically optimal cache behavior
(unlike any past algorithm)

STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]
» Good cache behavior in

practice

» Worst case span is
T ~n

» On random inputs span
is Too = O(n?/%)

STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm Smoothed-Striding Algorithm
[Francis and Pannan, 92; Frias and Petit, 08]
» Good cache behavior in » Provably optimal cache
practice behavior
» Worst case span is » Spanis
Too =1 Too = O(lognloglogn)

with high probability in n

» On random inputs span » Uses randomization inside the
is Too = O(n?/%) algorithm

SMOOTHED-STRIDING ALGORITHM’S PERFORMANCE

Speedup Over Serial Partition

12 -

10 - Strided
8 —
. \

Smoothed Striding
4 —
Standard

. \
0) ././././"**H—Q—H_’_H_.—’__.

L T T T O T O T T T A T T O N O B O |
1 234567 8 91011121314151617 18
Number of Threads

The Str1ded Algorlthm

nd Petit, 03]

Logically partition the array into chunks of adjacent elements

1 Dﬂﬂnuﬂﬂﬂ HHMHHUH nﬂﬂﬁiﬂﬂﬁﬂﬂw il

Pivot Value

Form groups P; that contain the i-th element from each chunk

|
1 DHH.HWH m Hﬂﬂﬁﬂﬂﬂl . | I
W

Py

Perform serial partitions on each P; in parallel over the P;’s

|

Bt oL e L o 0 s

This step is highly parallel.

RS,

Define v; = index of first element greater than the pivot in

i

Identify leftmost and rightmost v;

Pivot Value

Pivot Value

Final step: Recursively partition the subarray

HHHHHHH uH”DH”HH HHDU”HUH HHHH&JD\ HHHHM i

. v
Upnin subproblem max

HHHHHHH uH”DH”HH HHDU”HUH HHHH&JD\ HHHHM i

subproblem Umax

Umin

» Recursion is impossible!

» Final Step: Partition the subarray in serial.

Subproblem Span Too & Umax — Umin

HHHHHHH uH”DH”HH HHDU”HUH HHHH&JD\ HHHHM i

. v
Vrnin subproblem max

» Recursion is impossible!

» Final Step: Partition the subarray in serial.

Subproblem Span Too & Umax — Umin — 1 in worst case.

The Smoothed-Striding
Algorithm

Logically partition the array into chunks of adjacent elements

I Huﬂﬂﬂﬂﬂﬂ [l nﬂﬂﬂﬂﬂm ol L n[

Pivot Value

Key difference: Form groups U; that contain a random element
from each chunk

Perform serial partitions on each U; in parallel over the U;’s

L e g e o
i i o0 i ol H \||||| T e

This step is highly parallel.

t
vy

C L o

index of first element greater than the pivot in U;

I i ol o i

Define v;

Identify leftmost and rightmost v;

iii
/

LU e i g ol
I il i HHHH/II[HH Wl L H|||| U

Pivot Value “min Ymax - pi Gt Value

Final step: Recursively partition the subarray

\

bproblem Vmax

- 7/

/

Umin su

Final step: Recursively partition the subarray

L e g g]
it i o s ol WH all T \|H|| 10 AL

Umin Subproblcm Umax

» Recursion is now possible!

» Randomness guarantees that v ax — Umin is small

A KEY CHALLENGE

How do we store the U;’s if they are all random?
Storing which elements make up each U; takes too much space!

Strided Algorithm P;.

Smoothed-Striding Algorithm U;.

AN OPEN QUESTION

Our algorithm: span T, = O(lognloglogn)

Standard Algorithm: span T, = O(logn).

Can we get optimal cache behavior and span O(logn)?

ACKNOWLEDGMENTS

» MIT PRIMES
» William Kuszmaul, my PRIMES mentor
» My parents

Question Slides

HOW TO STORE THE GROUPS

The solution is to make the groups dependent on one another.
Let g be the size of a chunk. Then we only need to store a single
group and then the elements of the other groups are
determined by this group.

Specifically, let X be an array with values chosen uniformly
from {1,2,...,¢}. Then the i-th element of U; has index

1+ ((X[[] +j) modg)

THE SERIAL PARTITION ALGORITHM

Pivot value = 6

ow high

THE SERIAL PARTITION ALGORITHM

Pivot value = 6

low high

THE SERIAL PARTITION ALGORITHM

swap

ot

Pivot value = 6

THE SERIAL PARTITION ALGORITHM

Pivot value = 6

THE STANDARD PARALLEL PARTITION ALGORITHM

Pivot Value

—_]
—]
—l]
—]

THE STANDARD PARALLEL PARTITION ALGORITHM

M

