
Cache-Efficient Parallel Partition Algorithms

Alek Westover

MIT PRIMES

October 20, 2019



THE PARTITION PROBLEM

An unpartitioned array:

Pivot

Value

An array partitioned relative to a pivot value:

Pivot

Value



THE PARTITION PROBLEM

An unpartitioned array:

Pivot

Value

An array partitioned relative to a pivot value:

Pivot

Value



WHAT IS A PARALLEL ALGORITHM?

Fundamental primitive:
Parallel for loop

Parallel-For i from 1 to 4:
Do Xi

Time
X1

X1 X2 X3 X4



WHAT IS A PARALLEL ALGORITHM?
More complicated parallel structures can be made by
combining parallel for loops and recursion.

Time



Tp: TIME TO RUN ON p PROCESSORS

Time

Important extreme cases:

Work: T1

I time to run in serial
I ”sum of all work”

Span: T∞

I time to run on infinitely
many processors

I ”height of the graph”



BOUNDING Tp WITH WORK AND SPAN

Brent’s Theorem: [Brent, 74]

Tp = Θ

(
T1

p
+ T∞

)

Take away: Work T1 and span T∞ determine Tp.



THE STANDARD PARALLEL PARTITION ALGORITHM

Step Span

Create filtered array O(1)

Compute prefix sums of filtered array O(log n)

Use prefix sums to partition array O(1)

Total work: T1 = O(n)
Total span: T∞ = O(log n)



THE PROBLEM

Standard Algorithm is slow in practice

I Uses extra memory
I Makes multiple passes over array

}
”bad cache behavior”

Fastest algorithms in practice lack theoretical guarantees
I Lock-based and atomic-variable based algorithms

[Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders, 2017; Philip Heidelberger, Alan

Norton, and John T. Robinson, 1990; Philippas Tsigas and Yi Zhang, 2003]

I The Strided Algorithm
[Francis and Pannan, 92; Frias and Petit, 08]

No locks or atomic-variables, but no bound on span



OUR QUESTION

Can we create an algorithm with theoretical
guarantees that is fast in practice?



OUR RESULT

The Smoothed-Striding Algorithm

Key Features:
I linear work and polylogarithmic span

(like the Standard Algorithm)

I fast in practice
(like the Strided Algorithm)

I theoretically optimal cache behavior
(unlike any past algorithm)



STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm
[Francis and Pannan, 92; Frias and Petit, 08]

I Good cache behavior in
practice

I Worst case span is
T∞ ≈ n

I On random inputs span
is T∞ = Õ(n2/3)

Smoothed-Striding Algorithm

I Provably optimal cache
behavior

I Span is
T∞ = O(log n log log n)
with high probability in n

I Uses randomization inside the
algorithm



STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm
[Francis and Pannan, 92; Frias and Petit, 08]

I Good cache behavior in
practice

I Worst case span is
T∞ ≈ n

I On random inputs span
is T∞ = Õ(n2/3)

Smoothed-Striding Algorithm

I Provably optimal cache
behavior

I Span is
T∞ = O(log n log log n)
with high probability in n

I Uses randomization inside the
algorithm



SMOOTHED-STRIDING ALGORITHM’S PERFORMANCE

Strided

Standard

Smoothed Striding



The Strided Algorithm
[Francis and Pannan, 92; Frias and Petit, 08]



Logically partition the array into chunks of adjacent elements

Pivot Value



Form groups Pi that contain the i-th element from each chunk

P4



Perform serial partitions on each Pi in parallel over the Pi’s

This step is highly parallel.



Define vi = index of first element greater than the pivot in Pi

v4



Identify leftmost and rightmost vi

vmin vmax
<

Pivot Value

>

Pivot Value



Final step: Recursively partition the subarray

vmin
vmaxsubproblem



Final step: Recursively partition the subarray

vmin
vmaxsubproblem

I Recursion is impossible!
I Final Step: Partition the subarray in serial.

Subproblem Span T∞ ≈ vmax − vmin



Final step: Recursively partition the subarray

vmin
vmaxsubproblem

I Recursion is impossible!
I Final Step: Partition the subarray in serial.

Subproblem Span T∞ ≈ vmax − vmin←− n in worst case.



The Smoothed-Striding
Algorithm



Logically partition the array into chunks of adjacent elements

Pivot Value



Key difference: Form groups Ui that contain a random element
from each chunk

U4



Perform serial partitions on each Ui in parallel over the Ui’s

This step is highly parallel.



Define vi = index of first element greater than the pivot in Ui

v4



Identify leftmost and rightmost vi

vmin vmax
<

Pivot Value

>

Pivot Value



Final step: Recursively partition the subarray

vmin vmaxsubproblem



Final step: Recursively partition the subarray

vmin vmaxsubproblem

I Recursion is now possible!
I Randomness guarantees that vmax − vmin is small



A KEY CHALLENGE

How do we store the Ui’s if they are all random?

Storing which elements make up each Ui takes too much space!

Strided Algorithm Pi.

Smoothed-Striding Algorithm Ui.



AN OPEN QUESTION

Our algorithm: span T∞ = O(log n log log n)

Standard Algorithm: span T∞ = O(log n).

Can we get optimal cache behavior and span O(log n)?



ACKNOWLEDGMENTS

I MIT PRIMES
I William Kuszmaul, my PRIMES mentor
I My parents



Question Slides



HOW TO STORE THE GROUPS

The solution is to make the groups dependent on one another.
Let g be the size of a chunk. Then we only need to store a single
group and then the elements of the other groups are
determined by this group.
Specifically, let X be an array with values chosen uniformly
from {1, 2, . . . , g}. Then the i-th element of Uj has index

1 + ((X[i] + j) mod g)



THE SERIAL PARTITION ALGORITHM

Pivot value = 6

5 9 2 7 8 3

low high



THE SERIAL PARTITION ALGORITHM

Pivot value = 6

5 9 2 7 8 3

low high



THE SERIAL PARTITION ALGORITHM

Pivot value = 6

5 9 2 7 8 3

low high

swap



THE SERIAL PARTITION ALGORITHM

Pivot value = 6

5 92 7 83

low high



THE STANDARD PARALLEL PARTITION ALGORITHM

01 001 11 1

Pivot Value



THE STANDARD PARALLEL PARTITION ALGORITHM

01 212 43 5 12 43 5678


