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THE PARTITION PROBLEM

An unpartitioned array:




THE PARTITION PROBLEM

An unpartitioned array:
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An array partitioned relative to a pivot value:

”HH.—.HH_HHﬂn”ﬂHHHHHHHHHHHHHHH Pivot

ol R toe




WHAT IS A PARALLEL ALGORITHM?

Fundamental primitive:

Parallel for loop T]me

Parallel-For i from 1 to 4:
Do Xi




WHAT IS A PARALLEL ALGORITHM?

More complicated parallel structures can be made by
combining parallel for loops and recursion.

Time




Tp: TIME TO RUN ON p PROCESSORS

Time

Important extreme cases:

Work: T;
» time to run in serial

» “sum of all work”

Span: T
» time to run on infinitely
many processors
» "“height of the graph”



BOUNDING Tp WITH WORK AND SPAN

Brent’s Theorem: (srent, 74

SN

Take away: Work T; and span T, determine T),.



THE STANDARD PARALLEL PARTITION ALGORITHM
Step Span
Create filtered array O(1)
Compute prefix sums of filtered array O(logn)

Use prefix sums to partition array O(1)

Total work: T1 = O(n)
Total span: T, = O(logn)



THE PROBLEM
Standard Algorithm is slow in practice

» Uses extra memory “bad cache behavior”

» Makes multiple passes over array

Fastest algorithms in practice lack theoretical guarantees
» Lock-based and atomic-variable based algorithms
[Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders, 2017; Philip Heidelberger, Alan
Norton, and John T. Robinson, 1990; Philippas Tsigas and Yi Zhang, 2003]
» The Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

No locks or atomic-variables, but no bound on span



OUR QUESTION

Can we create an algorithm with theoretical
quarantees that is fast in practice?



OUR RESULT
The Smoothed-Striding Algorithm

Key Features:
» linear work and polylogarithmic span
(like the Standard Algorithm)

» fast in practice
(like the Strided Algorithm)

» theoretically optimal cache behavior
(unlike any past algorithm)



STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]
» Good cache behavior in

practice

» Worst case span is
T ~n

» On random inputs span
is Too = O(n?/%)



STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm Smoothed-Striding Algorithm
[Francis and Pannan, 92; Frias and Petit, 08]
» Good cache behavior in » Provably optimal cache
practice behavior
» Worst case span is » Spanis
Too =1 Too = O(lognloglogn)

with high probability in n

» On random inputs span » Uses randomization inside the
is Too = O(n?/%) algorithm



SMOOTHED-STRIDING ALGORITHM’S PERFORMANCE

Speedup Over Serial Partition
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The Str1ded Algorlthm

nd Petit, 03]



Logically partition the array into chunks of adjacent elements
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Form groups P; that contain the i-th element from each chunk
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Perform serial partitions on each P; in parallel over the P;’s
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This step is highly parallel.



RS,

Define v; = index of first element greater than the pivot in

i




Identify leftmost and rightmost v;

Pivot Value

Pivot Value



Final step: Recursively partition the subarray
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Upnin subproblem max



HHHHHHH uH”DH”HH HHDU”HUH HHHH&JD\ HHHHM i

subproblem Umax

Umin

» Recursion is impossible!

» Final Step: Partition the subarray in serial.

Subproblem Span Too & Umax — Umin
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. v
Vrnin subproblem max

» Recursion is impossible!

» Final Step: Partition the subarray in serial.

Subproblem Span Too & Umax — Umin — 1 in worst case.



The Smoothed-Striding
Algorithm



Logically partition the array into chunks of adjacent elements
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Key difference: Form groups U; that contain a random element
from each chunk




Perform serial partitions on each U; in parallel over the U;’s
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This step is highly parallel.
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index of first element greater than the pivot in U;
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Identify leftmost and rightmost v;
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Final step: Recursively partition the subarray

\

bproblem  Vmax
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Final step: Recursively partition the subarray
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Umin Subproblcm Umax

» Recursion is now possible!

» Randomness guarantees that v ax — Umin is small



A KEY CHALLENGE

How do we store the U;’s if they are all random?
Storing which elements make up each U; takes too much space!

Strided Algorithm P;.

Smoothed-Striding Algorithm U;.



AN OPEN QUESTION

Our algorithm: span T, = O(lognloglogn)

Standard Algorithm: span T, = O(logn).

Can we get optimal cache behavior and span O(logn)?
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HOW TO STORE THE GROUPS

The solution is to make the groups dependent on one another.
Let g be the size of a chunk. Then we only need to store a single
group and then the elements of the other groups are
determined by this group.

Specifically, let X be an array with values chosen uniformly
from {1,2,...,¢}. Then the i-th element of U; has index

1+ ((X[[] +j) modg)



THE SERIAL PARTITION ALGORITHM

Pivot value = 6
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THE SERIAL PARTITION ALGORITHM

Pivot value = 6

low high



THE SERIAL PARTITION ALGORITHM
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Pivot value = 6



THE SERIAL PARTITION ALGORITHM

Pivot value = 6




THE STANDARD PARALLEL PARTITION ALGORITHM
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THE STANDARD PARALLEL PARTITION ALGORITHM
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