
Presenter: Alex Ding
Mentor: Yan Gu
Special Thanks to: Julian Shun

An Evaluat ion of UPC++
U sin g D istrib u ted P a ra lle l
G ra p h Alg orith m s

Parallel Com put ing

Processor

Program

Sends
Instructions

Processor

Program

Sends
Instructions

Processor Processor Processor

Serial Parallel

Task 1

Task 2

Task 3

Task N

Task 1 Task 2 Task 3 Task 4

Parallel Com put ing

Challenges
● Synchronization
● Work distribution
● Communication overhead
● Hard to debug

Benefits
● Speed (only way)
● Scalability
● Real world is parallel

Shared Mem ory vs. Dist ribu ted Mem ory

● Memory shared by all processes
● Communicate through shared

memory

● Like our laptop: one shared

memory block for multiple cores

Shared Memory

Processor Processor Processor Processor

Network

Processor

Local
Memory

Processor

Local
Memory

Processor

Local
Memory

Processor

Local
Memory

● No shared memory
● Connected together by network

● Often on large network of

computers, each with its own
memory

Shared Mem ory vs. Dist ribu ted Mem ory

● Easy to program (data is shared)
● Fast communication
● Low scalability

○ Processors
○ Memory

● Hard to program
● Latency in message passing
● High scalability

○ Processors
○ Memory

Shared Memory

Processor Processor Processor Processor

Network

Processor

Local
Memory

Processor

Local
Memory

Processor

Local
Memory

Processor

Local
Memory

UPC++: Part it ioned Global Address Space
[Zheng et al., IPDPS 14]

● An attempt to unify the two models

● Memory is distributed, but UPC++ exposes global address interface
● Handles message passing

https://bitbucket.org/berkeleylab/upcxx/downloads/upcxx-guide-2019.9.0.pdf

https://bitbucket.org/berkeleylab/upcxx/downloads/upcxx-guide-2019.9.0.pdf

UPC++ (cont ’d) and Mot ivat ions

UPC++’s Goals

● Easy programming
● Take advantage of scalability of distributed memory system
● Allows programmer to use the same API for local and non-local data

○ Handles details of reading/writing non-local data

Our Question: Promises Delivered?

1. How scalable? (Overhead?)
2. How fast?
3. How easy to use? (Does it feel distributed or shared when coding?)

Our W ork

UPC++ vs. shared memory library (OpenMP): Scaling & Speed

1. Implemented common graph algorithms on UPC++ and OpenMP
2. Ran tests on a single-node, multi-core system

a. Varying core counts
b. Real-world and randomly-generated graphs

3. Implemented optimizations (significant work)
a. Dynamic top-down/grounds-up decision based on frontier density
b. Different graph partition methods to maximize locality and minimize communication

● Single node, multi-core system on AWS
○ C5.18xlarge instance (36 Intel Xeon cores, 144 GBs memory)

● Breadth-first-search implemented on UPC++ and OpenMP
● Graph: ego-Gplus (social circles from Google Plus)

○ 107,614 nodes, 13,673,453 edges, diameter 6
○ Retrieved from Stanford Network Analysis Project

● Compare runtime of program on UPC++ and OpenMP with different numbers of
cores used

● Goal is to explore
○ Scaling
○ UPC++’s overhead compared to OpenMP

Experim ent Setup

Resu lt s

● Overhead on single node
(2.82x)

● Great scaling on UPC++
○ 2x cores ~ ½ runtime

● Bad scaling on OpenMP
○ Overhead takes over

Other Resu lt s

● Other algorithms include: Bellman-Ford, Connected-Components, PageRank
● Real graphs Random graphs

○ 1,000 - 1,000,000 nodes
○ 1-100 edges per node

● Range of overhead: [0.66, 6.9]
● Consistently good scaling on UPC++

Graph Nodes

ego-Facebook 4,039

ego-Twitter 81,306

ego-Gplus 107,614

com-Youtube 1,134,890

com-Orkut 3,072,441

Conclusions

● Easy to work with
● Have to code with locality in mind to achieve good results
● Manageable local overhead

○ Communication has latency, but that depends on hardware
○ Given the advantages of distributed parallelism, overhead is acceptable

● Highly scalable

Future W ork

● Run tests on multi-node machines (in progress)
○ Waiting on supercomputer hours

● Optimize codebase for fast code
○ Implement the Gemini system [Zhu et al., OSDI 16]
○ Compare with state-of-the-art distributed graph algorithms

Quest ions?

	An Evaluation of UPC++ Using Distributed Parallel Graph Algorithms
	Parallel Computing
	Parallel Computing
	Shared Memory vs. Distributed Memory
	Shared Memory vs. Distributed Memory
	UPC++: Partitioned Global Address Space [Zheng et al., IPDPS 14]
	UPC++ (cont’d) and Motivations
	Our Work
	Experiment Setup
	Results
	Other Results
	Conclusions
	Future Work
	Questions?

