An Evaluation of UPC++
Using Distributed Parallel
Graph Algorithms

Presenter: Alex Ding
Mentor: Yan Gu
Special Thanks to: Julian Shun

Parallel Com puting

Task N

Sends
Instructions

Sends
Instructions

\ 4

Processor

Processor | Processor | Processor | Processor

Serial Parallel

Parallel Com puting

T
gy | e /o e
=N / \
— I = e
Serial Parallel
Benefits Challenges
e Speed (only way) e Synchronization
e Scalability e Work distribution
e Real world is parallel e Communication overhead
e Hard to debug

Shared Memory vs. Distributed Mem ory

e Memory shared by all processes e No shared memory
e Communicate through shared e Connected together by network
memory

Local Local Local Local
Memory Memory Memory Memory

Shared Memory

e Like our laptop: one shared e Often on large network of
memory block for multiple cores computers, each with its own
memory

Shared Memory vs. Distributed Mem ory

Local Local Local Local
Memory Memory Memory Memory

Shared Memory

e [Easy to program (data is shared) e Hard to program
e Fast communication e Latency in message passing
e Low scalability e High scalability

o Processors o Processors

o Memory o Memory

UPC++: Partitioned Global Address Space
[Zheng et al., IPDPS 14]

e An attempt to unify the two models

Global address space

Private Private Private Private
Segment Segment Segment Segment

Rank 0 Rank 1 Rank 2 Rank 3

https://bitbucket.org/berkeleylab/upcxx/downloads/upcxx-guide-2019.9.0.pdf

e Memory is distributed, but UPC++ exposes global address interface
e Handles message passing

https://bitbucket.org/berkeleylab/upcxx/downloads/upcxx-guide-2019.9.0.pdf

UPC++ (cont’d) and Motivations

UPC++'s Goals

e [Easy programming

e Take advantage of scalability of distributed memory system

e Allows programmer to use the same API for local and non-local data
o Handles details of reading/writing non-local data

Our Question: Promises Delivered?

1. How scalable? (Overhead?)
2. How fast?
3. How easy to use? (Does it feel distributed or shared when coding?)

Our Work

UPC++ vs. shared memory library (OpenMP): Scaling & Speed

1. Implemented common graph algorithms on UPC++ and OpenMP
2. Ran tests on a single-node, multi-core system
a. Varying core counts
b. Real-world and randomly-generated graphs
3. Implemented optimizations (significant work)
a. Dynamic top-down/grounds-up decision based on frontier density
b. Different graph partition methods to maximize locality and minimize communication

Experiment Setup

e Single node, multi-core system on AWS

o Ch.18xlarge instance (36 Intel Xeon cores, 144 GBs memory)
e Breadth-first-search implemented on UPC++ and OpenMP
e Graph: ego-Gplus (social circles from Google Plus)

o 107,614 nodes, 13,673,453 edges, diameter 6
o Retrieved from Stanford Network Analysis Project

e Compare runtime of program on UPC++ and OpenMP with different numbers of
cores used
e Goalisto explore

o Scaling
o UPC++’s overhead compared to OpenMP

Results

bfs: gplus_combined (107614 Nodes | 30494866 Edges)

e Overhead on single node

2.82x) .
° reat scaling on UPC++

o 2X cores ~ ¥ runtime

e Bad scaling on OpenMP
o Overhead takes over

Other Results

e Other algorithms include: Bellman-Ford, Connected-Components, PageRank
e Real graphs | c.n Nodes Random graphs

o 1,000 - 1,000,000 nodes

o 1-100 edges per node

ego-Facebook 4,039

ego-Twitter 81,306

ego-Gplus 107,614

com-Youtube 1,134,890

com-Orkut 3,072,441

e Range of overhead: [0.66, 6.9]
e Consistently good scaling on UPC++

Conclusions

e Easy to work with
Have to code with locality in mind to achieve good results
e Manageable local overhead

o Communication has latency, but that depends on hardware
o Given the advantages of distributed parallelism, overhead is acceptable

e Highly scalable

Future Work

e Run tests on multi-node machines (in progress)
o Waiting on supercomputer hours
e Optimize codebase for fast code
o Implement the Gemini system [Zhu et al.,OSDI 16]
o Compare with state-of-the-art distributed graph algorithms

Questions?

	An Evaluation of UPC++ Using Distributed Parallel Graph Algorithms
	Parallel Computing
	Parallel Computing
	Shared Memory vs. Distributed Memory
	Shared Memory vs. Distributed Memory
	UPC++: Partitioned Global Address Space [Zheng et al., IPDPS 14]
	UPC++ (cont’d) and Motivations
	Our Work
	Experiment Setup
	Results
	Other Results
	Conclusions
	Future Work
	Questions?

