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Introduction to Hi-C
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Chromatin structure in the
e Hi-C: Process of finding contact probabilities between every pair of regions in a DNA
strand
* Graphed as a square adjacency matrix (rows/cols are regions, cells are probabilities)
[ ]

Contact probabilities measures the interaction frequency of two regions
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Hi-C Matrix of
Rao et al. (2014) GM12878 genome



Patterns in Hi-C
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Datasets used: Schwarzer et al. (2017) NIPBL mutant,
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Compartmentalization

eigenvector

Checkerboarding pattern / —

Seen in both cis and e e o
trans interactions

Pattern captured by sign
of eigenvector Y
Clear that there are
subcompartments within
A/B
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Methodology and Challenges

 Methodology: Use existing clustering techniques from data science to
find subcompartments in Hi-C

* Challenges:
e Process Hi-C data into a form amenable to existing clustering algorithms
e Assess the quality of clusters
e Assess the number of clusters



What is clustering?

e Clusters are tightly packed
groups of points in space

e Clustering is the process of
algorithmically finding these
groups of points

(MathWorks)

Neil Chowdhury



Clustering algorithms

(finding k clusters in a set of n points in space)
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| ] 1. kinitial "means" (in this 2. kclusters are created by 3. The centroid of each of the 4. Steps 2 and 3 are repeated
O B d case k=3) are randomly associating every observation  k clusters becomes the new until convergence has been
O ..: generated within the data with the neares't mean. The  mean. reached.
* K-means L e Kemeans algorithm
° k CentrOids Example of Clusters (Wikipedia) e meens
e each point is in the cluster with the nearest centroid (means)
* minimize variance (squared Euclidean distance) within each
cluster
. /'\
» Agglomerative ®® ©®
e start with each point in its own cluster /
* repeatedly merge a pair of clusters by some linkage criterion
(single, ward, average) until k clusters reached bcdef

Agglomerative algorithm

e Spectral cde>

e create an affinity matrix, compute eigenvectors, use k-means to
cluster eigenvectors (images from Wikipedia)



Odd chromosomes

Creating a matrix for clustering

chr2 chra

Even chromosomes

“odd-even matrix”
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Problem with cis interactions: scaling of
contact probability and TADs interfere
with compartmentalization

Construct a matrix with all odd
chromosomes vs. all even
chromosomes (all trans interactions).
Technique used in Rao et al. (2014).

Clustering rows: treat rows as points in
thousand-dimensional space and
columns as dimensions

Clustering columns: treat columns as
points and rows as dimensions



Visualization of cluster labels

Column cluster labels (sorted)
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procedure on rows

and columns
2. Sort matrix by row and

column according to

cluster label

3. Plot matrix
4. Add clustering labels
to the top and left
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Eigendecomposition vs. clustering (k=2)

e Sort by cluster label, but
show eigenvector sign on
bottom and right
(A: +/red, B: -/blue)

Agglomerative (average linkage)
e Each clustering method is

able to find the two

Labels obtained /' compartments

from clustering

\

Labels obtained from
Spectra]\ eigenvector sign
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Stability

original

5% gaussian noise
75% subsample

perturbed

(specify k)

clusters

A

clusters

Rand index (ARI)
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Given: a set S of data points, a clustering algorithm .A that takes
the number k of clusters as input

(1) For
(a)

(b)

(c)

(d)

k=2:~'-sknmx

Generate perturbed versions Sy (b = 1,...,bmax) of
the original data set (for example by subsampling or
adding noise, see below)

For b=1,...,bmax:

Cluster the data set S; with algorithm A into k
clusters to obtain clustering C,

For b,b' =1,...,bmax:

Compute pairwise distances d(Cy,Cy) between these
clusterings (using one of the distance functions
described below)

Compute instability as the mean distance between
clusterings C;:
o 1 bmaz
Instab(k,n) = --— > d(Cs,Cy)
bmax bob =1

(2) Choose the parameter k that gives the best stability, in the
simplest case as follows:

K := argmin I’ﬁs'_t;ja(k, n)
k

Stability metric from Luxburg (2010).
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K-means

k=2
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Agglomerative

* Linkage measures the distance between clusters

e Average linkage most stable

e Stability increases as k gets larger
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Agglomerative (average linkage

k=30 e k >=20: four clusters

found, similar to K-means
with k=4
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Value

Dimensionality reduction [
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K-means (4)

Eigenvector: Negative (B)

Positive (A)
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Supported by stability analysis
Replicates the results of
agglomerative clustering
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ChlP-seq
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marker
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RepliSeq-51

RepliSeq-52

RepliSeq-53
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Repli-seq

Replication order: A1, A2, B1 = B2
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ChromHMM states

Distribution of length of regions associated with chromHMM label:
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69

B2

ChromHMM (hidden
Markov model) running
on ChlIP-seq classifies
DNA into 15 states
(promotors, enhancers,
quiescent, transcription
start sites, etc.)

B1 mainly made up of
Quies state (light gray)
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Conclusion

 Demonstrated that there are four nuclear subcompartments with
distinctive features

* Framework for clustering Hi-C data

Hi-C

eigenvector

odd-even
matrix

stability

# of
clusters

ChIP-seq

visual
inspection

clusters

ChromHMM

Repli-seq




Future Work

e Compare to physics models of chromatin

* Write software pipeline to find the compartments (A1, A2, B1, B2)
given any Hi-C matrix

* More sophisticated graph-based clustering techniques (simulated
annealing)

* More fine-grained analysis with resolution higher than 1mb
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ChIP-seq/Repli-seq enrichments compared to
Rao et al. clusters
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Distribution of logged trans contact
probabilities
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Adjusted Rand Index (ARI)

e Xand Y are two
clusterings of the same
set. X, and Y, each
represent a cluster.

* ARI measures similarity
between the two
clusterings

X\Y Y1 Y, ... Y, | Sums
X1 i1 MNi2 Nis ai
Xo | mMo1 Mo ... N as
-X'P Ny Nyp2 eer Nypg Qr
Sums b by ... b,

Contingency table (Wikipedia)

Adjusted Index

Ny S () =12 (39 X, /()

ARI - 1 a; b; a; b; n
S22 (5) + 325 G =122 (5) 225 (9)1/(5)

ARI formula (Wikipedia)



NIPBL vs. Untreated (UNTR)

* Mouse liver cells

 NIPBL is a cohesion loading protein
thought to be responsible for loop
extrusion
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ChromHMM

Specify number of chromatin states

Observations: ChIP-seq tracks

(Wikipedia)
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Agglomerative (single linkage, k=5
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Comparison with human cells

GM12878 (Human cell line)

NIPBL factor removed

30
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Mouse liver



Effect of Dimensionality Reduction
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