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Background: Digital Signatures
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Background: Threshold Signatures
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Distributed Key Generation (DKG)
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Distributed Key Generation (DKG)
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Distributed Key Generation (DKG): Applications

Generating secret keys for threshold signature schemes
Generating random nonces for Schnorr threshold signatures
Random beacons

Proactive Secret Sharing



Contributions

DKG scheme

Feldman DKG
Kate DKG

AMT DKG

Per-player bandwidth

o(nt)

Per-player computation
time (deal + verify)

o(nt)
O(nt)

O(n log(n))



DKG Outline

e FEach player i acts as a dealer and “shares” a secret s. with all other players
via Verifiable Secret Sharing (VSS)
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e Our contribution: We show how to do VSS in O(n log n) time rather than
O(nt) time, which helps scale DKG



Secret Sharing (SS)

e Dealer picks a secret s and “shares” it with all other players such that t out of
n can reconstruct it
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Secret Sharing (SS)
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Verifiable Secret Sharing (VSS)
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Polynomial Commitments

e Polynomial commitment to p(x) is gP®

e How do we provide evaluation proofs &, that a value p(i) =y and verify proof
against commitment gP® ?

e Polynomial remainder theorem:
p(x) -y = q(x)(x-i) if and only if p(i) = y

e Proof: Commitment to quotient g%®

e \erify? Check using magic! (bilinear pairings)

e Dealer: O(nt) time to compute evaluation proofs
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Solution: Multipoint Evaluation

P(x) O(n log?n) rather

/// \ than O(nt)

p(1) p(2) p(3) ............... p(n)

e Need to build evaluation proofs that p(i) =y
e Key idea: multipoint evaluation is just a tree of polynomials. We commit to
some of them and obtain proofs too.
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Multipoint Evaluation
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Authenticated Multipoint Evaluation Trees (AMT)
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Recap

e DKG - generate shared SK and PK, requires each player to perform a VSS

e VSS - pick polynomial p and send p(i) to each player i, needs to compute
proofs that p(i) is valid using polynomial commitments

e Polynomial commitments - existing schemes like Kate take O(nt) to compute
all proofs, AMT provides all proofs in O(n log?n) time

e Result: Faster DKG that scales to tens of thousands of players.
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Results
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DKG per-player deal+verify times (or VSS total time) 10.78
—— Feldman +— hours
—e— Kate et al
—— AMT 4 1852
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Thank you!

Questions?



