
Scalable Distributed Key
Generation

Robert Chen
Mentored by Alin Tomescu

2019 PRIMES Conference
5/19/19

1

Background: Digital Signatures

2

Signer Verifier

M = “Hello.”
σ = Sign(M, SKSigner)

M

σ

Verify(σ, M, PKSigner) = true

Background: Threshold Signatures

M

σ

Single
threshold
signature

σ1 = Sign(M, SK1)

σ2 = Sign(M, SK2)

σn = Sign(M, SKn)

M

σ1

M

M

σn

Signature Shares

σ2

3

 Verify(σ, M, PKgroup) = true

σ = Sign(M, SKgroup)

Distributed Key Generation (DKG)

4

PKgroup

SKgroup

S1

S2

Sn

SKgroup

Distributed Key Generation (DKG)

5

PKgroup

SKgroup

malicious < t

Distributed Key Generation (DKG): Applications

6

● Generating secret keys for threshold signature schemes
● Generating random nonces for Schnorr threshold signatures
● Random beacons
● Proactive Secret Sharing

Contributions

7

DKG scheme Per-player bandwidth Per-player computation
time (deal + verify)

Feldman DKG O(nt) O(nt)

Kate DKG O(n) O(nt)

AMT DKG O(n log(n)) O(n log(n))

DKG Outline

8

● Each player i acts as a dealer and “shares” a secret si with all other players
via Verifiable Secret Sharing (VSS)

SK = ∑si

Player i

Pick a si

si1

si2

sin

● Our contribution: We show how to do VSS in O(n log n) time rather than
O(nt) time, which helps scale DKG

Secret Sharing (SS)

9

● Dealer picks a secret s and “shares” it with all other players such that t out of
n can reconstruct it

p(x) = c0 + c1x + c2x
2 + … +

ct-1x
t-1

s = c0

Secret Sharing (SS)

10

Dealer

Pick a p(x)

p(1)

p(2)

p(n)

Verifiable Secret Sharing (VSS)

11

Dealer

Pick a p(x)

y1 = p(1)
𝝅1

y2 = p(2)
𝝅2

yn = p(n)
𝝅n

Verify(y1, 𝝅1)

Verify(yn, 𝝅n)

Verify(y2, 𝝅2)

Polynomial Commitments

● Polynomial commitment to p(x) is gp(𝛂)
● How do we provide evaluation proofs 𝝅i that a value p(i) = y and verify proof

against commitment gp(𝛂) ?
● Polynomial remainder theorem:

p(x) - y = q(x)(x-i) if and only if p(i) = y
● Proof: Commitment to quotient gq(𝛂)

● Verify? Check using magic! (bilinear pairings)
● Dealer: O(nt) time to compute evaluation proofs

12

Solution: Multipoint Evaluation

● Need to build evaluation proofs that p(i) = y
● Key idea: multipoint evaluation is just a tree of polynomials. We commit to

some of them and obtain proofs too.

13

p(x)

p(1) p(2) p(3) p(n)

O(n log2n) rather
than O(nt)

Multipoint Evaluation

14

q1,4,
r1,4

p / (x-1)(x-2)(x-3)(x-4)

q1,2,
r1,2

r1,4 / (x-1)(x-2)
q3,4,
r3,4

r1,4 / (x-3)(x-4)

q1, r1

r1,2 / (x-1)

q2, r2

r1,2 / (x-2)

q3, r3

r3,4 / (x-3)

q4, r4

r3,4 / (x-4)

r1 = p % (x-1) = p(1) r2 = p % (x-2) = p(2) r3 = p % (x-3) = p(3) r4 = p % (x-4) = p(4)

O(n log2n)

Authenticated Multipoint Evaluation Trees (AMT)

15

q1,4,
r1,4

p / (x-1)(x-2)(x-3)(x-4)

q1,2,
r1,2

r1,4 / (x-1)(x-2)
q3,4,
r3,4

r1,4 / (x-3)(x-4)

q1, r1

r1,2 / (x-1)

q2, r2

r1,2 / (x-2)

q3, r3

r3,4 / (x-3)

q4, r4

r3,4 / (x-4)

r1 = p % (x-1) = p(1) r2 = p % (x-2) = p(2) r3 = p % (x-3) = p(3) r4 = p % (x-4) = p(4)

𝝅3 = (gq1,4(𝛂)
, g

q3,4(𝛂)
, g

q3(𝛂))
p(x) =
q1,4(x-1)(x-2)(x-3)(x-4) + q3,4(x-3)(x-4) + q3(x-3) +
p(3)

 O(n log2n)

→ O(n log n)

Recap

● DKG - generate shared SK and PK, requires each player to perform a VSS
● VSS - pick polynomial p and send p(i) to each player i, needs to compute

proofs that p(i) is valid using polynomial commitments
● Polynomial commitments - existing schemes like Kate take O(nt) to compute

all proofs, AMT provides all proofs in O(n log2n) time
● Result: Faster DKG that scales to tens of thousands of players.

16

Results

17

18.52
minutes

10.78
hours

Acknowledgements

18

I would like to thank:
● My mentor, Alin Tomescu, for his support and guidance
● Srini Devadas, for coordinating CS-PRIMES
● My parents and family
● MIT-PRIMES program

Thank you!
Questions?

19

