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What is a vector commitment (VC) scheme?

- Commitments
- Take a value, place it in an envelope, seal it, and put the envelope where it is visible to 

everyone
- Once the envelope is sealed, the value can’t be changed
- The value remains a secret until the envelope is opened

- Vector commitments
- A commitment to an ordered sequence of values (i.e. a vector), openings by index

v = [2858d5e05d] C = Commit(v)
Commit

C  πC,i = Open(C,i)
Opening
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everyone
- Once the envelope is sealed, the value can’t be changed
- The value remains a secret until the envelope is opened
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 C[i] , πC,i 
Verify(C[i],  πC,i) = 
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Verify



What is a vector commitment (VC) scheme?

- A commitment to an ordered sequence of values (i.e. a vector)
- Position binding

- no openings to two distinct values at the same index

- Updatability
- efficient updates for commitments and their proofs

C = Commit(v)

v = Open(C)

v’ = Open(C)

Opening



What is a vector commitment (VC) scheme?

- A commitment to an ordered sequence of values (i.e. a vector)
- Position binding

- no openings to two distinct values at the same index

- Updatability
- efficient updates for commitments and their proofs

πC,i = Open(C,i) πC,i’ = Open(C’,i)
UpdateProof

C = Commit(v) C’ = Commit(v’)
Update



VCs haves many interesting applications

- Verifiable Secret Sharing (VSS)
- Distributed Key Generation (DKG)
- Stateless cryptocurrencies

- Avoid miners having to store the full blockchain state

- Append-only Authenticated Dictionaries
- Useful for securing HTTPS, WhatsApp, and email



Catalano & Fiore Vector Commitments

- Generate bilinear groups G1 and G2 of prime order p with the bilinear map e : 
G1 x G1 → G2

- Generate a random generator g of G1 and random integers z1, z2,...,zn
- Given a,b,c the bilinear map checks that c is the product of a and b “in the 

exponent”



Catalano & Fiore Vector Commitments

- Generate bilinear groups G1 and G2 of prime order p with the bilinear map e : 
G1 x G1 → G2

- Generate a random generator g of G1 and random integers z1, z2,...,zn
- Compute the public parameters:

- There are O(n2) public parameters



Catalano & Fiore Vector Commitments

- To commit to a vector (a1,a2,...,an), compute 

- To open at index i, compute 



Catalano & Fiore Vector Commitments

- To verify a commitment at index i given the proof πC,i, check the following 

- If the commitment and proofs are valid, this is equivalent to 



Catalano & Fiore Vector Commitments

- To update the commitment of a vector as it changes from (a1,a2,...ai,...,an) → 
(a1,a2,..ai’,...an), compute

- To update the proof πC,j when the vector changes at index i, compute



Catalano & Fiore Vector Commitments

- To update the proof πC,j when the vector changes at index i, compute

- Updating the proof at index j requires a client to have the verification key 
consisting of all the hi,j’s for fixed j, which has size O(n)



Summary

- Proof size: O(1)
- Proof update time: O(1)
- “Update key” size: O(n)
- Public parameter size: O(n2)



Our scheme from Lagrange polynomials

- Represent a vector v[1,2,...,n] as a polynomial P(x) where P(i) = vi



Our scheme from Lagrange polynomials

- Represent a vector v[1,2,...,n] as a polynomial P(x) where P(i) = vi
- We can use Lagrange interpolation to obtain 

- Here, Li(x) is the ith Lagrange basis polynomial, which has the form 



Our scheme from Lagrange polynomials

- Represent a vector v[1,2,...,n] as a polynomial P(x) where P(i) = vi
- We can use Lagrange interpolation to obtain 

- Generate bilinear groups G1 and G2 of prime order p with the bilinear map e : 
G1 x G1 → G2

- Compute the public parameters 

- Use these to compute the commitment to P, which is gP(s)



Multipoint Evaluation Trees

R
P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)



Multipoint Evaluation Trees
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P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)
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Commitment Proofs
- The opening πC,i consists of the commitments to all the quotients and 

accumulators in the path from the root to the leaf corresponding to index i
- This is because the following equation



Commitment Proofs
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Opening at index 
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Commitment Verification
- To verify the correctness of the opening at index i given the opening πC,i, use 

bilinear maps to check the opening equation is true “in the exponent”



Commitment Verification
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Updating Commitments & Proofs

- To update the commitment of a vector as it changes from (a1,a2,...ai,...,an) → 
(a1,a2,..ai’,...an), compute

- To update the proof πC,j when the vector changes at index i, we need the 
verification key consisting of commitments to all quotients in the path from the 
root to leaf i, which has size O(log n)
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Multipoint Evaluation Trees with Roots of Unity
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Multipoint Evaluation Trees with Roots of Unity
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Summary

- Proof size: O(log n)
- Proof update time: O(log n)
- “Update key” size: O(log n)
- Public parameter size: O(n)



Summary

Scheme Proof size Proof update 
time

Proof 
"update key" 
size

Precompute 
all proofs

Public 
parameters 
size

Catalano & 
Fiore

1 1 n n2 n2

Papamathou 
et al

log n log n log n n2 n

Our scheme log n log n log n n log n n



Conclusion and Future Work

- A new VC scheme from univariate polynomials
- Lots of applications: VSS, DKG, stateless cryptocurrencies, etc.
- Future work: build an AAD with this VC scheme using "append-only proofs": 

given old VC and new VC, an append-only proof shows the new VC does not 
change any positions in the old VC


