
Vector commitments from
univariate polynomials and

their applications
PRIMES Conference

May 19th, 2019
Yiming Zheng
Alin Tomescu

What is a vector commitment (VC) scheme?

- Commitments
- Take a value, place it in an envelope, seal it, and put the envelope where it is visible to

everyone
- Once the envelope is sealed, the value can’t be changed
- The value remains a secret until the envelope is opened

- Vector commitments
- A commitment to an ordered sequence of values (i.e. a vector), openings by index

v = [2858d5e05d] C = Commit(v)
Commit

C πC,i = Open(C,i)
Opening

What is a vector commitment (VC) scheme?

- Commitments
- Take a value, place it in an envelope, seal it, and put the envelope where it is visible to

everyone
- Once the envelope is sealed, the value can’t be changed
- The value remains a secret until the envelope is opened

- Vector commitments
- A commitment to an ordered sequence of values (i.e. a vector), openings by index

C πC,i = Open(C)
Opening

 C[i] , πC,i
Verify(C[i], πC,i) =

T/F

Verify

What is a vector commitment (VC) scheme?

- A commitment to an ordered sequence of values (i.e. a vector)
- Position binding

- no openings to two distinct values at the same index

- Updatability
- efficient updates for commitments and their proofs

C = Commit(v)

v = Open(C)

v’ = Open(C)

Opening

What is a vector commitment (VC) scheme?

- A commitment to an ordered sequence of values (i.e. a vector)
- Position binding

- no openings to two distinct values at the same index

- Updatability
- efficient updates for commitments and their proofs

πC,i = Open(C,i) πC,i’ = Open(C’,i)
UpdateProof

C = Commit(v) C’ = Commit(v’)
Update

VCs haves many interesting applications

- Verifiable Secret Sharing (VSS)
- Distributed Key Generation (DKG)
- Stateless cryptocurrencies

- Avoid miners having to store the full blockchain state

- Append-only Authenticated Dictionaries
- Useful for securing HTTPS, WhatsApp, and email

Catalano & Fiore Vector Commitments

- Generate bilinear groups G1 and G2 of prime order p with the bilinear map e :
G1 x G1 → G2

- Generate a random generator g of G1 and random integers z1, z2,...,zn
- Given a,b,c the bilinear map checks that c is the product of a and b “in the

exponent”

Catalano & Fiore Vector Commitments

- Generate bilinear groups G1 and G2 of prime order p with the bilinear map e :
G1 x G1 → G2

- Generate a random generator g of G1 and random integers z1, z2,...,zn
- Compute the public parameters:

- There are O(n2) public parameters

Catalano & Fiore Vector Commitments

- To commit to a vector (a1,a2,...,an), compute

- To open at index i, compute

Catalano & Fiore Vector Commitments

- To verify a commitment at index i given the proof πC,i, check the following

- If the commitment and proofs are valid, this is equivalent to

Catalano & Fiore Vector Commitments

- To update the commitment of a vector as it changes from (a1,a2,...ai,...,an) →
(a1,a2,..ai’,...an), compute

- To update the proof πC,j when the vector changes at index i, compute

Catalano & Fiore Vector Commitments

- To update the proof πC,j when the vector changes at index i, compute

- Updating the proof at index j requires a client to have the verification key
consisting of all the hi,j’s for fixed j, which has size O(n)

Summary

- Proof size: O(1)
- Proof update time: O(1)
- “Update key” size: O(n)
- Public parameter size: O(n2)

Our scheme from Lagrange polynomials

- Represent a vector v[1,2,...,n] as a polynomial P(x) where P(i) = vi

Our scheme from Lagrange polynomials

- Represent a vector v[1,2,...,n] as a polynomial P(x) where P(i) = vi
- We can use Lagrange interpolation to obtain

- Here, Li(x) is the ith Lagrange basis polynomial, which has the form

Our scheme from Lagrange polynomials

- Represent a vector v[1,2,...,n] as a polynomial P(x) where P(i) = vi
- We can use Lagrange interpolation to obtain

- Generate bilinear groups G1 and G2 of prime order p with the bilinear map e :
G1 x G1 → G2

- Compute the public parameters

- Use these to compute the commitment to P, which is gP(s)

Multipoint Evaluation Trees

R
P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

Multipoint Evaluation Trees

R

N0 N1

P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

Multipoint Evaluation Trees

R

N0 N1

N00 N01 N10 N11

P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0(x) = q01(x)(x-3)(x-4)+r01(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

Multipoint Evaluation Trees

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0(x) = q01(x)(x-3)(x-4)+r01(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Commitment Proofs
- The opening πC,i consists of the commitments to all the quotients and

accumulators in the path from the root to the leaf corresponding to index i
- This is because the following equation

Commitment Proofs

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0(x) = q01(x)(x-3)(x-4)+r01(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Opening at index
2 (node N001)

Commitment Proofs

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0(x) = q01(x)(x-3)(x-4)+r01(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Opening at index
2 (node N001)

Commitment Verification
- To verify the correctness of the opening at index i given the opening πC,i, use

bilinear maps to check the opening equation is true “in the exponent”

Commitment Verification

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0(x) = q01(x)(x-3)(x-4)+r01(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Verifying opening at
index 2 (node N001)

Commitment Verification

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0(x) = q01(x)(x-3)(x-4)+r01(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Verifying opening at
index 2 (node N001)

Commitment Verification

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0(x) = q01(x)(x-3)(x-4)+r01(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Verifying opening at
index 2 (node N001)

Commitment Verification

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0(x) = q01(x)(x-3)(x-4)+r01(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Verifying opening at
index 2 (node N001)

Updating Commitments & Proofs

- To update the commitment of a vector as it changes from (a1,a2,...ai,...,an) →
(a1,a2,..ai’,...an), compute

- To update the proof πC,j when the vector changes at index i, we need the
verification key consisting of commitments to all quotients in the path from the
root to leaf i, which has size O(log n)

Updating Proofs

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P(x) = qR(x)(x-1)(x-2)...(x-8)+rR(x)

rR(x) = q0(x)(x-1)...(x-4)+r0(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0(x) = q01(x)(x-3)(x-4)+r01(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Proof for index 2
(node N001)

Updating Proofs

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P’(x) = qR’(x)(x-1)(x-2)...(x-8)+rR’(x)

rR’(x) = q0’(x)(x-1)...(x-4)+r0’(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0’(x) = q01’(x)(x-3)(x-4)+r01’(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Update key for
index 3 (node N010)

r01’(x) =
q010’(x)(x-2)+r010’(x)

Updating Proofs

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P’(x) = qR’(x)(x-1)(x-2)...(x-8)+rR’(x)

rR’(x) = q0’(x)(x-1)...(x-4)+r0’(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0(x) = q00(x)(x-1)(x-2)+r00(x) r0’(x) = q01’(x)(x-3)(x-4)+r01’(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Update key for
index 3 (node N010)

r01’(x) =
q010’(x)(x-2)+r010’(x)

Updating Proofs

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P’(x) = qR’(x)(x-1)(x-2)...(x-8)+rR’(x)

rR’(x) = q0’(x)(x-1)...(x-4)+r0’(x) rR(x) = q1(x)(x-5)...(x-8)+r1(x)

r0’(x) =
q00’(x)(x-1)(x-2)+r00’(x)

r0’(x) = q01’(x)(x-3)(x-4)+r01’(x)
r1(x) = q10(x)(x-5)(x-6)+r10(x) r1(x) = q11(x)(x-5)(x-6)+r11(x)

r00’(x) =
q000’(x)(x-1)+r000’(x)

r00(x) =
q001(x)(x-2)+r001(x)

r11(x) =
q111(x)(x-2)+r111(x)

Update key for
index 3 (node N010)

r01’(x) =
q010’(x)(x-2)+r010’(x)

Multipoint Evaluation Trees with Roots of Unity

R
P(x) = qR(x)(x8-1)+rR(x)

Multipoint Evaluation Trees with Roots of Unity

R

N0 N1

P(x) = qR(x)(x8-1)+rR(x)

rR(x) = q0(x)(x4-1)+r0(x)
rR(x) = q1(x)(x4+1)+r1(x)

Multipoint Evaluation Trees with Roots of Unity

R

N0 N1

N00 N01 N10 N11

P(x) = qR(x)(x8-1)+rR(x)

rR(x) = q0(x)(x4-1)+r0(x)
rR(x) = q1(x)(x4+1)+r1(x)

r0(x) = q00(x)(x2-1)+r00(x) r0(x) = q01(x)(x2+1)+r01(x)
r1(x) = q10(x)(x2-i)+r10(x) r1(x) = q11(x)(x4+i)+r11(x)

Multipoint Evaluation Trees with Roots of Unity

R

N0 N1

N00 N01 N10 N11

N00

0

N00

1

N01

0

N01

1

N10

0

N10

1
N110 N111

P(x) = qR(x)(x8-1)+rR(x)

rR(x) = q0(x)(x4-1)+r0(x)
rR(x) = q1(x)(x4+1)+r1(x)

r0(x) = q00(x)(x2-1)+r00(x) r0(x) = q01(x)(x2+1)+r01(x)
r1(x) = q10(x)(x2-i)+r10(x) r1(x) = q11(x)(x4+i)+r11(x)

r00(x) =
q000(x)(x-1)+r000(x)

r00(x) =
q001(x)(x+1)+r001(x)

r11(x) =
q111(x)(x+ω4)+r111(x)

Summary

- Proof size: O(log n)
- Proof update time: O(log n)
- “Update key” size: O(log n)
- Public parameter size: O(n)

Summary

Scheme Proof size Proof update
time

Proof
"update key"
size

Precompute
all proofs

Public
parameters
size

Catalano &
Fiore

1 1 n n2 n2

Papamathou
et al

log n log n log n n2 n

Our scheme log n log n log n n log n n

Conclusion and Future Work

- A new VC scheme from univariate polynomials
- Lots of applications: VSS, DKG, stateless cryptocurrencies, etc.
- Future work: build an AAD with this VC scheme using "append-only proofs":

given old VC and new VC, an append-only proof shows the new VC does not
change any positions in the old VC

