
Verkle Trees:
Ver(y Short Mer)kle Trees

John Kuszmaul
Mentored by Alin Tomescu
PRIMES Conference - 5/19/2019

1

Storing Files Remotely

Alice Dropbox

Alice sends her files F0, F1, … , Fn.

2

Storing Files Remotely

Alice

What is Fi?

Here you go: Fi`

3

Dropbox

Proving/Verifying Integrity (or Correctness)

Alice

Alice generates a digest d
of her files.

Alice sends her files F0, F1, … , Fn.

4

Dropboxd

Proving/Verifying Integrity

Alice

Alice verifies the proof πi against d to
make sure Fi has not been modified.

Fi, and a proof of membership, πi

5

Dropbox

What is Fi?

d

Secure Hash Functions

6

Hash
Function H(Fi) =

011010...110

Bob owes
Alice $70k.

Bob owes
Alice $20.

Original File Fi

Corrupted File Fi`

Hash
Function H(Fi`) =

100111...101

256
bits

256
bits

Ideally,

finding any two distinct
files, F1, F2, s.t.

H(F1) = H(F2)

takes 2128 attempts.

A Simple Scheme for Verifying File Integrity

7

F0 F2 F7F5F1 F3 F4 F6

H(F0) H(F1) H(F2) H(F7)H(F3) H(F4) H(F5) H(F6)

Alice hashes each of her files:

Alice

Alice computes and stores
the hashes locally.

Alice sends her files F0, F1, … , Fn.

8

DropboxH(F0), H(F1),
H(F2), …

H(Fn)

Proving/Verifying Integrity: Simple Scheme

Alice

Alice computes H(Fi) and checks that it
equals stored H(Fi).

Fi

9

DropboxH(F0), H(F1),
H(F2), …

H(Fn)

What is Fi?

Proving/Verifying Integrity: Simple Scheme

10

Alice H(F0), H(F1),
H(F2), …

H(Fn)

Problem: Alice has to store n hashes.

Alice’s digest must be constant-sized.

Solution: Merkle Trees

F0 F2 F7F5F1 F3 F4 F6

H(F0) H(F1) H(F2) H(F7)H(F3) H(F4) H(F5) H(F6)

The root is the digest.

11

h13 = H(h10, h11)

h8 = H(h0, h1) h9 = H(h2, h3) h10 = H(h4, h5) h11 = H(h6, h7)

h12 = H(h8, h9)

h14 = H(h12, h13)

h0 = h1 = h2 = h3 = h4 = h5 = h6 = h7 =

Alice

Alice computes the Merkle tree
and stores the root locally.

Alice sends her files F0, F1, … , Fn.

12

Dropbox

Proving/Verifying Integrity: Merkle Tree
d =
root
d =
root

Alice

13

Dropbox

Proving/Verifying Integrity: Merkle Tree
d =
root
d =
root

What is Fi?

How does Dropbox respond with a proof?

14

F0 F2 F7F5F1 F3 F4 F6

H(F0) H(F1) H(F2) H(F7)H(F3) H(F4) H(F5) H(F6)

14

h13 = H(h10, h11)

h8 = H(h0, h1) h9 = H(h2, h3) h10 = H(h4, h5) h11 = H(h6, h7)

h12 = H(h8, h9)

h14 = H(h12, h13)

h0 = h1 = h2 = h3 = h4 = h5 = h6 = h7 =

Dropbox sends these
highlighted nodes.Merkle Proofs

Alice

15

Dropbox

Proving/Verifying Integrity: Merkle Tree
d =
root
d =
root

 H(h0, h1) H(h10, h11)H(F2)F3

The Proof

16

F3

H(F2) H(F3)

16

h13 = H(h10, h11)

h8 = H(h0, h1) h9 = H(h2, h3)

h12 = H(h8, h9)

h14 = H(h12, h13)

h2 = h3 =

Verifying the Proof

Alice computes the root starting
from F3 with these highlighted proof.

17

F3

H(F2) H(F3)

17

h13 = H(h10, h11)

h8 = H(h0, h1) h9 = H(h2, h3)

h12 = H(h8, h9)

h14 = H(h12, h13)

h2 = h3 =

Alice hashes up the tree.

Verifying the Proof

18

F3

H(F2) H(F3)

18

h13 = H(h10, h11)

h8 = H(h0, h1) h9 = H(h2, h3)

h12 = H(h8, h9)

h14 = H(h12, h13)

h2 = h3 =

Alice hashes up the tree.

Verifying the Proof

19

F3

H(F2) H(F3)

19

h13 = H(h10, h11)

h8 = H(h0, h1) h9 = H(h2, h3)

h12 = H(h8, h9)

h14 = H(h12, h13)

h2 = h3 =

Alice hashes up the tree.

Verifying the Proof

20

F3

H(F2) H(F3)

20

h13 = H(h10, h11)

h8 = H(h0, h1) h9 = H(h2, h3)

h12 = H(h8, h9)

h14 = H(h12, h13)

h2 = h3 =

Alice checks if the
Merkle Root = d

F3 has not been
modified!

Time to stop
using Dropbox!

Verifying the Proof

Everyone loves Merkle Trees!
● They’re beautiful.

Merkle Tree

Construct Tree O(n)

Proof size O(log n)

Update File O(log n)

21

n = number of leaves (files)

● They’re efficient.

Problem: Many small files ⇒ Merkle proofs too large.

● Suppose Alice has one billion ≈ 230 files.

23

Problem: Many small files ⇒ Merkle proofs too large.

● Suppose Alice has one billion ≈ 230 files.

Merkle Proof: ~ 1 KB
(in addition to the file itself)

24

Depth: 30

Problem: Many small files ⇒ Merkle proofs too large.

Possible Solution: q-ary Merkle Tree

25
F2 F7F5F1 F3 F4 F6F0 F8

Example: 3-ary tree

H(F0, F1, F2) H(F6, F7, F8)h0 = H(F3, F4, F5)h1 = h2 =

H(h0, h1, h2)h3 =

H(F0) H(F1) H(F2) H(F3) H(F4) H(F5) H(F6) H(F7) H(F8)

Problem: The Proof Becomes Bigger, O(q logqn)

26
F2 F7F5F1 F3 F4 F6F0 F8

Example: 3-ary tree

H(F0, F1, F2) H(F6, F7, F8)h0 = H(F3, F4, F5)h1 = h2 =

H(h0, h1, h2)h3 =

H(F0) H(F1) H(F2) H(F3) H(F4) H(F5) H(F6) H(F7) H(F8)

Our Work: Verkle Trees reduce the proof size

● We pick a q.
● We reduce the proof size from log2n to logqn = log2n / log2q.
● Factor of log2q less bandwidth!
● At the cost of q times more computation to construct.
● Proof verification is log2q times faster.

27

Wow, that’s big!
Bob

Does this matter? (Hint: Yes)

● Merkle hash trees are everywhere in cryptography:
○ Consensus Protocols
○ Public-Key Directories
○ Cryptocurrencies
○ Encrypted Web Applications
○ Secure File Systems

28

Vector Commitment (VC) Schemes by Catalano and Fiore (2013)

29

F2, π2 F7, π7F5, π5F1, π1 F3, π3 F4, π4 F6, π6

C

F0, π0 F8, π8

Commitment (C) is the digest.

Each file has a constant-sized proof (π).

VC Schemes are Computationally Impractical

30

Scheme/op Construct Proof size

Merkle O(n) O(log2n)

VC scheme O(n2) O(1)

31

C1, π9 C2, π10 C3, π11

C4

Our Solution: Replace Hash Functions with VC Schemes

F2, π2 F7, π7F5, π5F1, π1 F3, π3 F4, π4 F6, π6F0, π0 F8, π8

This is the Verkle Tree.

32

C1, π9 C2, π10 C3, π11

C4

F2, π2 F7, π7F5, π5F1, π1 F3, π3 F4, π4 F6, π6F0, π0 F8, π8

We now have a Verkle Tree!

The root commitment is
the digest.

We get to choose the
branching factor, q, to
be whatever we want!

33

C1, π9 C2, π10 C3, π11

C4

F2, π2 F7, π7F5, π5F1, π1 F3, π3 F4, π4 F6, π6F0, π0 F8, π8

Alice Receives logqn Constant-Sized π’s.

Alice verifies:
1. VC Proof from F2 to C1: π2
2. VC Proof from C1 to C4: π9

Comparison

34

Scheme/op Construct Update file Proof size

Merkle O(n) O(log2n) O(log2n)

q-ary Merkle O(n) O(q logqn) O(q logqn)

VC scheme O(n2) O(n) O(1)

q-ary Verkle O(qn) O(q logqn) O(logqn)

Verkle Trees let us trade off proof-size vs. construction time.

My Contribution
● I proved complexity bounds for Verkle Trees.
● I implemented and optimized Verkle Trees in C++.
● Benchmarked implementations.

35

36

Prefix Tree

37

Prefix Tree vs. History Tree

38

Prefix Tree vs. History Tree vs. Parallelized History

39

On a Linear Scale:

Acknowledgements
● Thank you Alin!
● Thank you PRIMES!
● Thank you Mom and Dad!

40

C1, π9 C2, π10 C3, π11

C4

F2, π2 F7, π7F5, π5F1, π1 F3, π3 F4, π4 F6, π6F0, π0 F8, π8

