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Storing Files Remotely

Alice Dropbox

Alice sends her files F0, F1, … , Fn.
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Storing Files Remotely

Alice

What is Fi?

Here you go: Fi`
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Dropbox



Proving/Verifying Integrity (or Correctness)

Alice

Alice generates a digest d 
of her files.

Alice sends her files F0, F1, … , Fn.
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Dropboxd



Proving/Verifying Integrity

Alice

Alice verifies the proof πi against d to 
make sure Fi has not been modified.

Fi, and a proof of membership, πi
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Dropbox

What is Fi?

d



Secure Hash Functions
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Hash 
Function H(Fi) =

011010...110

Bob owes 
Alice $70k.

Bob owes 
Alice $20.

Original File Fi

Corrupted File Fi`

Hash 
Function H(Fi`) = 

100111...101

256 
bits

256 
bits

Ideally, 

finding any two distinct 
files, F1, F2, s.t.

H(F1) = H(F2) 

takes 2128 attempts.



A Simple Scheme for Verifying File Integrity
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F0 F2 F7F5F1 F3 F4 F6

H(F0) H(F1) H(F2) H(F7)H(F3) H(F4) H(F5) H(F6)

Alice hashes each of her files:



Alice

Alice computes and stores 
the hashes locally.

Alice sends her files F0, F1, … , Fn.
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DropboxH(F0), H(F1), 
H(F2), …

H(Fn)

Proving/Verifying Integrity: Simple Scheme



Alice

Alice computes H(Fi) and checks that it 
equals stored H(Fi).

Fi
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DropboxH(F0), H(F1), 
H(F2), …

H(Fn)

What is Fi?

Proving/Verifying Integrity: Simple Scheme
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Alice H(F0), H(F1), 
H(F2), …

H(Fn)

Problem: Alice has to store n hashes.

Alice’s digest must be constant-sized.



Solution: Merkle Trees

F0 F2 F7F5F1 F3 F4 F6

H(F0) H(F1) H(F2) H(F7)H(F3) H(F4) H(F5) H(F6)

The root is the digest.
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h13 = H(h10, h11)

h8 =  H(h0, h1) h9 = H(h2, h3) h10 = H(h4, h5) h11 = H(h6, h7)

h12 = H(h8, h9)

h14 = H(h12, h13)

h0 = h1 = h2 = h3 = h4 = h5 = h6 = h7 =



Alice

Alice computes the Merkle tree 
and stores the root locally.

Alice sends her files F0, F1, … , Fn.
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Dropbox

Proving/Verifying Integrity: Merkle Tree
d =
root
d =
root



Alice
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Dropbox

Proving/Verifying Integrity: Merkle Tree
d =
root
d =
root

What is Fi?

How does Dropbox respond with a proof?



14

F0 F2 F7F5F1 F3 F4 F6

H(F0) H(F1) H(F2) H(F7)H(F3) H(F4) H(F5) H(F6)
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h13 = H(h10, h11)

h8 =  H(h0, h1) h9 = H(h2, h3) h10 = H(h4, h5) h11 = H(h6, h7)

h12 = H(h8, h9)

h14 = H(h12, h13)

h0 = h1 = h2 = h3 = h4 = h5 = h6 = h7 =

Dropbox sends these 
highlighted nodes.Merkle Proofs



Alice
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Dropbox

Proving/Verifying Integrity: Merkle Tree
d =
root
d =
root

 H(h0, h1) H(h10, h11)H(F2)F3

The Proof
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F3

H(F2) H(F3)
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h13 = H(h10, h11)

h8 =  H(h0, h1) h9 = H(h2, h3)

h12 = H(h8, h9)

h14 = H(h12, h13)

h2 = h3 =

Verifying the Proof

Alice computes the root starting 
from F3 with these highlighted proof.
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F3

H(F2) H(F3)
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h13 = H(h10, h11)

h8 =  H(h0, h1) h9 = H(h2, h3)

h12 = H(h8, h9)

h14 = H(h12, h13)

h2 = h3 =

Alice hashes up the tree.

Verifying the Proof
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F3

H(F2) H(F3)
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h13 = H(h10, h11)

h8 =  H(h0, h1) h9 = H(h2, h3)

h12 = H(h8, h9)

h14 = H(h12, h13)

h2 = h3 =

Alice hashes up the tree.

Verifying the Proof
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F3

H(F2) H(F3)
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h13 = H(h10, h11)

h8 =  H(h0, h1) h9 = H(h2, h3)

h12 = H(h8, h9)

h14 = H(h12, h13)

h2 = h3 =

Alice hashes up the tree.

Verifying the Proof
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F3

H(F2) H(F3)
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h13 = H(h10, h11)

h8 =  H(h0, h1) h9 = H(h2, h3)

h12 = H(h8, h9)

h14 = H(h12, h13)

h2 = h3 =

Alice checks if the 
Merkle Root = d

F3 has not been 
modified!

Time to stop 
using Dropbox!

Verifying the Proof



Everyone loves Merkle Trees!
● They’re beautiful.

Merkle Tree

Construct Tree O(n)

Proof size O(log n)

Update File O(log n)
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n = number of leaves (files)

● They’re efficient.



Problem: Many small files ⇒ Merkle proofs too large.



● Suppose Alice has one billion ≈ 230 files.
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Problem: Many small files ⇒ Merkle proofs too large.



● Suppose Alice has one billion ≈ 230 files.

Merkle Proof: ~ 1 KB
(in addition to the file itself)
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Depth: 30

Problem: Many small files ⇒ Merkle proofs too large.



Possible Solution: q-ary Merkle Tree
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F2 F7F5F1 F3 F4 F6F0 F8

Example: 3-ary tree

H(F0, F1, F2) H(F6, F7, F8)h0 = H(F3, F4, F5)h1 = h2 =

H(h0, h1, h2)h3 =

H(F0) H(F1) H(F2) H(F3) H(F4) H(F5) H(F6) H(F7) H(F8)



Problem: The Proof Becomes Bigger, O(q logqn)
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F2 F7F5F1 F3 F4 F6F0 F8

Example: 3-ary tree

H(F0, F1, F2) H(F6, F7, F8)h0 = H(F3, F4, F5)h1 = h2 =

H(h0, h1, h2)h3 =

H(F0) H(F1) H(F2) H(F3) H(F4) H(F5) H(F6) H(F7) H(F8)



Our Work: Verkle Trees reduce the proof size

● We pick a q.
● We reduce the proof size from log2n to logqn = log2n / log2q.
● Factor of log2q less bandwidth! 
● At the cost of q times more computation to construct.
● Proof verification is log2q times faster.
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Wow, that’s big!
Bob



Does this matter?    (Hint: Yes)

● Merkle hash trees are everywhere in cryptography:
○ Consensus Protocols
○ Public-Key Directories
○ Cryptocurrencies
○ Encrypted Web Applications
○ Secure File Systems
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Vector Commitment (VC) Schemes by Catalano and Fiore (2013)
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F2, π2 F7, π7F5, π5F1, π1 F3, π3 F4, π4 F6, π6

C

F0, π0 F8, π8

Commitment (C) is the digest.

Each file has a constant-sized proof (π).



VC Schemes are Computationally Impractical
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Scheme/op Construct Proof size

Merkle O(n) O(log2n)

VC scheme O(n2) O(1)
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C1, π9 C2, π10 C3, π11

C4

Our Solution: Replace Hash Functions with VC Schemes

F2, π2 F7, π7F5, π5F1, π1 F3, π3 F4, π4 F6, π6F0, π0 F8, π8

This is the Verkle Tree.
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C1, π9 C2, π10 C3, π11

C4

F2, π2 F7, π7F5, π5F1, π1 F3, π3 F4, π4 F6, π6F0, π0 F8, π8

We now have a Verkle Tree!

The root commitment is 
the digest.

We get to choose the 
branching factor, q, to 
be whatever we want!
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C1, π9 C2, π10 C3, π11

C4

F2, π2 F7, π7F5, π5F1, π1 F3, π3 F4, π4 F6, π6F0, π0 F8, π8

Alice Receives logqn Constant-Sized π’s.

Alice verifies:
1. VC Proof from F2 to C1: π2
2. VC Proof from C1 to C4: π9



Comparison
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Scheme/op Construct Update file Proof size

Merkle O(n) O(log2n) O(log2n)

q-ary Merkle O(n) O(q logqn) O(q logqn)

VC scheme O(n2) O(n) O(1)

q-ary Verkle O(qn) O(q logqn) O(logqn)

Verkle Trees let us trade off proof-size vs. construction time.



My Contribution
● I proved complexity bounds for Verkle Trees.
● I implemented and optimized Verkle Trees in C++.
● Benchmarked implementations.
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Prefix Tree
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Prefix Tree vs. History Tree
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Prefix Tree vs. History Tree vs. Parallelized History
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On a Linear Scale:
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C1, π9 C2, π10 C3, π11

C4

F2, π2 F7, π7F5, π5F1, π1 F3, π3 F4, π4 F6, π6F0, π0 F8, π8


