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What is a factoring algorithm?

Find a divisor of N.



Factoring N

Divide by every prime in

[1...vV/N]
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119/2 not an integer.
119/3 not an integer.
119/5 not an integer.

119/7 = 17 is an integer!
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Factoring N

o Let a:=[VN] o a:=[V119] =11

o Let b:=a?’ - N e b:=112-119=2

e Repeat until b is a square: e b (2) is not a square:
Increase a by 1 (a:=a+1) a:=a+1=12
b:=a’>-N b:=122-119 =25

o When b is a square, then e b =25 1is a square, so
(a — V/b) is a factor. 12 — +/25 =7 is a factor.



Simple Factoring Algorithm: Fermat

Factoring N

o Let a:=[VN] o a:=[/119] =11

o Let b:=a®>— N 0 b:=112-119=2

e Repeat until b is a square: @ b (2) is not a square:
Increase a by 1 (a:=a+1) a:=a+1=12
b:=a®>- N b:=122-119=25

e When b is a square, then e b =25 is a square, so
(a — \/I;) is a factor. 12 — /25 = 7 is a factor.

Works because of square difference 22 — y? = (z + y)(z — y)
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Slower than the leading algorithms

Much less space required



One line of PARI/GP...

OLF(x)=;i=1;while (i<x, if (issquare (ceil (sqrt (i*x)
) 2%x),return (ged (x, floor (ceil (sqrt (ixx))—sqrt ((
ceil (i%x))"2)%)))));i++)
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Repeat for k =1 to k = N: Example: N = 119
2 p— —
OLetmz[\/ﬂ-‘ %N OWhenk_l,m_z
@ When k=2, m=18
e If m is a square: o When k — 3, m — 4
Factor is

o Factor:

GCD(N, [\/N—kw —Vm) GCD(119, [m} — V4)



Factoring N

Repeat for k =1 to k = N: Example: N = 119
2 p— —
OLetmz[\/ﬂ-‘ %N OWhenk_l,m_z
@ When k=2, m=18
e If m is a square: o When k — 3, m — 4
Factor is

o Factor:
GeD(119, [m} i
GCD(119,17) = 17

GCD(N, [\/N—kw _ )
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Factor numbers N = pgq

Applications in cryptography (like RSA)



Pretty Picture: Result of factoring pq
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Factoring pq:
@ X-coordinate is
prime p,
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prime g,
p, q are first
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Pretty Picture: Result of factoring pq

Factoring pq:

@ X-coordinate is
prime p,
Y -coordinate is
prime g,
p, q are first
1600 primes

o Green: Smaller

prime returned

e If p,q are close:
Smaller prime
returned
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Pretty Picture: Result of factoring pq

Factoring pq:

@ X-coordinate is
prime p,
Y -coordinate is
prime gq,
p, q are first
1600 primes

@ Green: Smaller
prime returned

e If p,q are close:
Smaller prime
returned

e Probability of
green is ~ 50%
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Performance of OLF on semiprimes

Number of iterations
to factor pq:

@ X-coordinate is
prime p,
Y -coordinate is
prime gq,
p, q are first
1600 primes
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Performance of OLF on semiprimes

Number of iterations
to factor pq:

@ X-coordinate is
prime p,
Y -coordinate is
prime gq,
p, q are first
1600 primes

e Points colored
from black to
white; Whiter
means more
iterations
required
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The algorithm required trying every number from k& =1 to (at most)
k=N

Can we skip some k?

What if we just use squarefree k?
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Pretty Picture: Where is squarefree OLF better?

o Green:
Squarefree
approach faster
(fewer
iterations)

Tejas Gopalakrishna OLF on Large Semiprimes May 2019 12 /16



Pretty Picture: Where is squarefree OLF better?

o Green:
Squarefree
approach faster
(fewer
iterations)

e Distinct regions
where this is
more efficient

Tejas Gopalakrishna OLF on Large Semiprimes May 2019 12 /16



Pretty Picture: Where is squarefree OLF better?

o Green:
Squarefree
approach faster
(fewer
iterations)

e Distinct regions
where this is
more efficient

@ Better on
roughly ~ 35.5%
of semiprimes
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e k'™ bar: Amount of
integers that requires k
iterations to factor

o Decreases rapidly

o Therefore, skipping k
will not always help.
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o However, the picture is
different if only
factoring semiprimes

o Many £ not used.

o (Conjecture:) k only

has to be {0,1,3,5,7}
‘ modulo 8
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o What causes the strange bands?
o Can we precisely definine when the lower prime is returned?
@ Prove the semiprime iterations conjecture.

e When can we skip k in the general algorithm (not just
semiprimes)?

e Anything else to make it faster!
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