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Introduction



Deep Learning (DL) can surpass humans
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DL in security-critical applications




Is DL ready for this?



Deep Neural Network (DNN) - Natural Setting

V. Fischer, M. Kumar, J. Metzen, T. Brox
“Adversarial Examples for Semantic Image Segmentation” 7




- Adversarial Setting

DNN




Why do we need robust DNNs?

Robustness to real-world perturbs Alignment with human intelligence
e Some natural perturbations e Goal of ML: Make intelligent
(e.g., rain) can trick classifiers systems
e Train models that are more e Most humans wouldn’t get

reliable in the natural world fooled, but these systems do



Background



How do we train robust DNNs?



Adversarial Training - A robust training method
Natural Training Set
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Adversarial Training - A robust training method
Adversarlal Tralnlng Set
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Universal Adversarial Perturbations (UAPs)

Regular Adversarial Perturbations UAPs
T L(x+4d,y,0) Rax [zz:; L(z; + 6,y, 9)]
e Image-specific (one e Class-specific (one
perturbation per image) perturbation for all images in a
e Stronger, more targeted particular class)

e More general
e Location-invariant
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Goal: Use UAPs to study the
general dynamics of
Adversarial Tralning



Methodology



UAP Generation

Averaging

Simplest, most obvious method

Singular Value Decomposition (SVD)

e Goal: Explain away variance

e [nputs: Data

e Outputs: Vectors that explain the
most variance in data
(eigenvectors) and their
associated eigenvalues
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UAP Generation Cont.

e Pre-trained natural and adversarial models from Madry et al.

e UAPs generated and evaluated on MNIST (handwriting recognition)
and CIFAR-10 (image recognition) test sets

e Focuson adversaries bounded in L2 norm - more interpretable
perturbations
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Experiments
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Adversarial Training Induces
More Human-interpretable
Features



MNIST
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Multiple UAP Directions Exist
for MNIST



The Eigenvalue Spectra

MNIST

2.7

2.5 2.1 2.0 1.8

CIFAR-10

No large drop
Multiple universal directions
Cause: Linear separability

54.4
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Order of magnitude drop
One main universal direction
Cause: No linear separability,
images mesh together
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Adversarial Training Causes
Local Loss Landscape
Smoothening



Optimization Trajectories - MNIST
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Optimization Trajectories - CIFAR-10

€os sim to avg grad at final step
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Distribution of Cos Similarities for Single Image
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Thank You!

Questions?



