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Introduction
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Deep Learning (DL) can surpass humans
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DL in security-critical applications
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Is DL ready for this?
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Deep Neural Network (DNN) - Natural Setting
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V. Fischer, M. Kumar, J. Metzen, T. Brox
“Adversarial Examples for Semantic Image Segmentation”



DNN - Adversarial Setting
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Why do we need robust DNNs?

Alignment with human intelligence

● Goal of ML: Make intelligent 
systems

● Most humans wouldn’t get 
fooled, but these systems do
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Robustness to real-world perturbs

● Some natural perturbations 
(e.g., rain) can trick classifiers

● Train models that are more 
reliable in the natural world



Background
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How do we train robust DNNs?
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Adversarial Training - A robust training method
Natural Training Set

Model Parameters
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Adversarial Training - A robust training method
Adversarial Training Set

Model Parameters
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Universal Adversarial Perturbations (UAPs)
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Regular Adversarial Perturbations

● Image-specific (one 
perturbation per image)

● Stronger, more targeted

UAPs

● Class-specific (one 
perturbation for all images in a 
particular class)

● More general
● Location-invariant



Goal: Use UAPs to study the 
general dynamics of 
Adversarial Training
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Methodology
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UAP Generation

Averaging

● Simplest, most obvious method

Singular Value Decomposition (SVD)

● Goal: Explain away variance
● Inputs: Data
● Outputs: Vectors that explain the 

most variance in data 
(eigenvectors) and their 
associated eigenvalues
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UAP Generation Cont.
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● Pre-trained natural and adversarial models from Madry et al.
● UAPs generated and evaluated on MNIST (handwriting recognition) 

and CIFAR-10 (image recognition) test sets
● Focus on adversaries bounded in L2 norm - more interpretable 

perturbations



Experiments
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Adversarial Training Induces 
More Human-Interpretable 
Features
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MNIST

21

Naturally Trained Adversarially Trained



CIFAR-10
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Naturally Trained Adversarially Trained



Multiple UAP Directions Exist 
for MNIST
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The Eigenvalue Spectra
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MNIST

● No large drop
● Multiple universal directions
● Cause: Linear separability

CIFAR-10

● Order of magnitude drop
● One main universal direction
● Cause: No linear separability, 

images mesh together
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Adversarial Training Causes 
Local Loss Landscape 
Smoothening
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Optimization Trajectories - MNIST
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Naturally Trained Adversarially Trained



Optimization Trajectories - CIFAR-10
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Naturally Trained Adversarially Trained



Distribution of Cos Similarities for Single Image

Naturally Trained Adversarially Trained
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Thank You!

Questions?
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