Extractable Tree-Statistics from the Quasisymmetric Bernardi Polynomial

Lucy Cai, Espen Slettnes, Jeremy Zhou

Mentor: Duncan Levear Advisor: Professor Olivier Bernardi

Ninth Annual MIT PRIMES Conference

May 18-19, 2019

Agenda

Introduction & Definitions

2 Findings

3 Consequences & Open Questions

Let D = (V, A) be a directed graph.

Notation

Let $f: V \to \mathbb{N}$ be a coloring of the vertices.

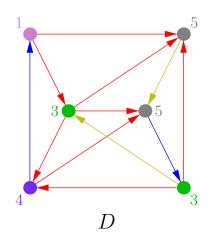
- Ascents are the elements of $f_A^> := \{(u, v) \in A | f(v) > f(u)\}.$
- Descents are the elements of $f_A^{<} := \{(u, v) \in A | f(v) < f(u)\}.$

The Quasisymmetric Bernardi polynomial (QSBP) is the formal power series

$$B_D(\boldsymbol{x}; y, z) = \sum_{f:V \to \mathbb{N}} \left(\prod_{v \in V} x_{f(v)} \right) y^{|f_A^{\diamond}|} z^{|f_A^{\diamond}|}$$

for indeterminates $(x_i)_{i\in\mathbb{N}}$.

- The QSBP is the generating function over all colorings counted by the number of ascents (y), descents (z), and uses of each color (x_i) , respectively.
- Motivated by Richard Stanley's Tutte symmetric function.



$$B_{D}(\mathbf{x}; y, z)$$

$$= B((x_{1}, x_{2}, ...); y, z)$$

$$= \sum_{f:V \to \mathbb{N}} \left(\prod_{v \in V} x_{f(v)} \right) y^{|f_{A}^{>}|} z^{|f_{A}^{<}|}$$

$$= ... + x_{1}x_{3}^{2}x_{4}x_{5}^{2}y^{8}z^{2} + ...$$

Open Question (Stanley, 1995)

Does the Tutte symmetric function distinguish all non-isomorphic trees?

Open Question (Awan & Bernardi, 2018): Analogue for Digraphs Does the QSBP distinguish all non-isomorphic rooted trees?

We want to find information about rooted trees from their QSBP.

Definition

- A tree-statistic is a function on the set of rooted trees.
- Tree-statistic S is extractable if for all rooted trees T_1 , T_2 where $B_{T_1}(\mathbf{x}; y, z) = B_{T_2}(\mathbf{x}; y, z)$, it follows that $S(T_1) = S(T_2)$.
- We want extractable tree-statistics S because if $S(T_1) \neq S(T_2)$, $B_{T_1}(\mathbf{x}; y, z) \neq B_{T_2}(\mathbf{x}; y, z)$.

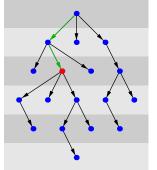
Layer 2, Co-height 1

Layer 3, Co-height 2

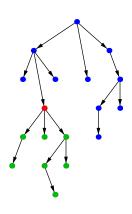
Layer 4, Co-height 3

Layer 5, Co-height 4

Layer 6, Co-height 5



$$h_{\rm v} = 2$$



$$w_{\mathbf{v}} = |S_{\mathbf{v}}| = 8$$

Definition

• Rooted tree T = (V, A), vertex $v \in V$, given $(a_u)_{u \in V}$ a vertex-statistic, we define P_v^a to denote the multiset

$$\{a_u \mid u \in S_v\}$$

• P_T^a means $P_{v_T}^a$, where v_T is the root of T.

Definition

- Co-height profile of a tree T is P_T^h ,
- Weight profile is P_T^w .

Definition

We say e.g., the *co-height profile profile* of a tree T is $P_T^{P^h}$.

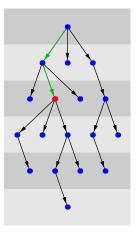
Layer 2, Co-height 1

Layer 3, Co-height 2

Layer 4, Co-height 3

Layer 5, Co-height 4

Layer 6, Co-height 5



$$h_{\rm v} = 2$$

{3, 4}, {3}, {3, 4, 4, 5}, {3, 4}, {3},

{4}, {4,5}, {4}, {4}

{5}}

Agenda

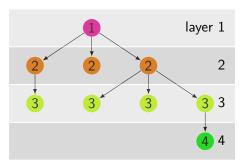
Introduction & Definitions

2 Findings

3 Consequences & Open Questions

Theorem

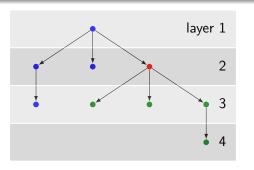
For a rooted tree T, the coheight profile P_T^h is extractable.



$$x_1^{1}x_2^{3}x_3^{4}x_4^{1}y^{|A|}z^{0} \longrightarrow P_T^h = \{\underbrace{0}_{1}, \underbrace{1,1,1}_{3}, \underbrace{2,2,2,2}_{4}, \underbrace{3}_{1}\}$$

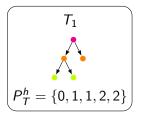
Theorem

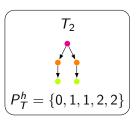
The coheight profile profile $P_T^{P^h}$ is extractable.

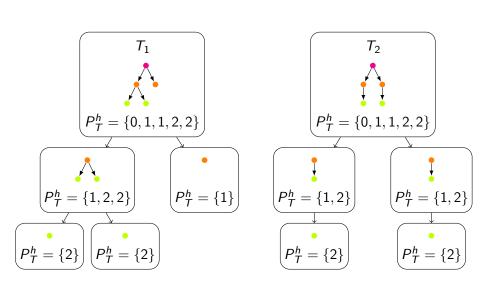


Coheight profile of \mathbf{v} : $P_{\mathbf{v}}^{h} = \{1, 2, 2, 2, 3\}$

Coheight profile profile: $P_T^{Ph} = \{\{0, 1, 1, 1, 2, 2, 2, 2, 3\}, \{1, 2\}, \{1\}, \{1, 2, 2, 2, 3\}, \{2\}, \{2\}, \{2\}, \{2, 3\}, \{3\}\}$







Agenda

Introduction & Definitions

2 Findings

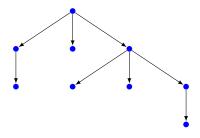
3 Consequences & Open Questions

Consequences

Corollary

We can extract:

- the number of leaves in each layer.
- ② the outdegree distribution of each layer.
- 1 the height profile of each layer.
- 1 the weight profile of each layer.



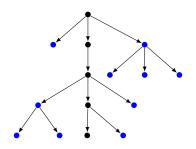
Consequences: 2-Caterpillars

Definition

An n-caterpillar tree is a rooted directed tree in which all vertices are at most distance n from a central path.

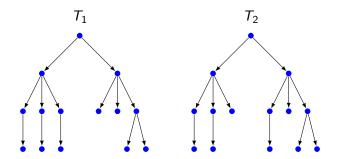
Corollary

We can distinguish between all 2-caterpillar trees.



Indistinguishable Trees

The previous theorem cannot distinguish these two trees:



By computer evidence, they do not have the same QSBP, but they have the same coheight profile profiles.

Open Questions

Main Question

Does the QSBP distinguish between all rooted directed trees?

- Opes the QSBP distinguish between all rooted directed trees with 4 layers?
- ② For what n > 2 can the QSBP distinguish between all n-caterpillars?
- **3** Under what conditions will two trees T_1 , T_2 share the same coheight profile profile?

Acknowledgements

We wish to thank

- Our mentor Duncan Levear of Brandeis University, and his advisor Professor Olivier Bernardi, for valuable guidance.
- Professor Pavel Etingof, Dr. Tanya Khovanova, and Dr. Slava Gerovitch for organizing MIT PRIMES.
- The MIT Math Department.