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Introduction & Definitions

Let D = (V, A) be a directed graph.

Notation

Let f : V — N be a coloring of the vertices.
o Ascents are the elements of f; = {(u,v) € A|f(v) > f(u)}.
o Descents are the elements of £ := {(u, v) € A|f(v) < f(u)}.

The Quasisymmetric Bernardi polynomial (QSBP) is the formal power

series o
Bo(xiy.2) = Y. (] xew) v/ 1251

fFIVoN  vev
for indeterminates (x;)en.

@ The QSBP is the generating function over all colorings counted by

the number of ascents (y), descents (z), and uses of each color (x;),
respectively.

@ Motivated by Richard Stanley’s Tutte symmetric function.



Introduction & Definitions

BD(X;y7Z)
= B((x1,x2,...);¥,2)
> <
= 3 () '
fVoN vev
=...+ X1X§X4X52y822 + ...

/19



Introduction & Definitions

Open Question (Stanley, 1995)

Does the Tutte symmetric function distinguish all non-isomorphic trees?

v

Open Question (Awan & Bernardi, 2018): Analogue for Digraphs

Does the QSBP distinguish all non-isomorphic rooted trees?

@ We want to find information about rooted trees from their QSBP.

Definition
@ A tree-statistic is a function on the set of rooted trees.

o Tree-statistic S is extractable if for all rooted trees Ty, To where
Br,(x;y,z) = Br,(x; y, 2), it follows that S(T1) = S(T>2).

e We want extractable tree-statistics S because if S(T1) # S(T2),
BTl(X; Y, Z) # BT2(X; Y, Z).
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Layer 1, Co-height 0
Layer 2, Co-height 1
Layer 3, Co-height 2
Layer 4, Co-height 3
Layer 5, Co-height 4

Layer 6, Co-height 5
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Introduction & Definitions

Definition
@ Rooted tree T = (V, A), vertex v € V, given (a,),cy a
vertex-statistic, we define PZ to denote the multiset

{ay|ueS,}

e P7 means P7_, where v is the root of T.

Definition
o Co-height profile of a tree T is P?,
o Weight profile is PY.

Definition

We say e.g., the co-height profile profile of a tree T is P-’;h.
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Introduction & Definitions

Layer 1, Co-height 0 P\’; = {2737373747 474’7 5}
PR =10,1,1,1,2,2,2,2,
baver Goheignt 3,3,3,3,3,4,4,4,4,5}
Layer 3, Co-height 2 Pfh = {{273737374747475}a
{3,4},{3},{3,4,4,5}
Layer 4, Co-height 3 {4}7 {475}7 {4}’

{5}}

Layer 5, Co-height 4

Layer 6, Co-height 5 {1,2,2,2,3,3,3,4,4,4,5},{1},{1,2,3,3,4},
{2},{2,3,3,3,4,4,4,5},{2},{2,3,3,4},
{3,4},{3},{3,4,4,5}.{3,4}, {3},
h, =2 {4}, {45}, {4}, {4}
{51}
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Findings

Theorem

For a rooted tree T, the coheight profile Pf,’- is extractable.
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Findings

Theorem

The coheight profile profile PTPh is extractable.

/T\ layer 1
i o‘/ i \o 3
L4

Coheight profile of v: Ph = {1,2,2,2 3}

Coheight profile profile: P'D =4{{0,1,1,1,2,2,2,2,3},
{1,2},{1},{1,2,2,2, 3 2}, {2}, {2} (2.3}, 3}}
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Findings

T1
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Ph =1{0,1,1,2,2}
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PR =1{0,1,1,2,2}
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Findings
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Consequences

Corollary
We can extract:
© the number of leaves in each layer.
@ the outdegree distribution of each layer.
© the height profile of each layer.
@ the weight profile of each layer.

o
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Consequences: 2-Caterpillars

Definition
An n-caterpillar tree is a rooted directed tree in which all vertices are at
most distance n from a central path.

Corollary

We can distinguish between all 2-caterpillar trees.

AN
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Indistinguishable Trees

The previous theorem cannot distinguish these two trees:

T1 1>

By computer evidence, they do not have the same QSBP, but they have
the same coheight profile profiles.
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Open Questions

Main Question
Does the QSBP distinguish between all rooted directed trees? J

© Does the QSBP distinguish between all rooted directed trees with 4
layers?
@ For what n > 2 can the QSBP distinguish between all n-caterpillars?

© Under what conditions will two trees T, T, share the same coheight
profile profile?
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