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Algebras

Definition

A module M over a ring R is a set of elements that can be added
together and multiplied by a scalar λ ∈ R. An algebra is a module
equipped with a product between elements in M that outputs
another element in M.

Examples:

Polynomials in R: R[x1, . . . , xn]

Rational functions in R: R(x1, . . . , xn)

Laurent polynomials in R: R[x±1
1 , . . . , x±1

n ]

The set of n × n square matrices in R
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The Shuffle Algebra

For a ring R, the shuffle algebra AR is the subset of the set of
symmetric rational functions in arbitrarily many variables with
coefficients in R, generated by 1 variable functions.

The shuffle product takes a function in k variables and a function
in l variables and “shuffles” their variables to get a function in
k + l variables:

F (a, b)∗G (c, d) = F (a, b)G (c , d)+F (a, c)G (b, d)+F (a, d)G (b, c)

+F (b, c)G (a, d) + F (b, d)G (a, c) + F (c , d)G (a, b).
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The Integral Shuffle Algebra

Definition

The integral shuffle algebra is a subset of
⊕

k≥0 SymR(z1, ..., zk)

and is the shuffle algebra over the ring R = C[q±1
1 , q±1

2 ].

The shuffle product is

P(z1, . . . , zk ) ∗ Q(z1, . . . , zl ) =

1

k!l!

∑
sym

P(z1, . . . , zk )Q(zk+1, . . . , zk+l )
∏

1≤i≤k
k<j≤k+l

(zi − q1q2zj )(zj − q1zi )(zj − q2zi )

zi − zj
.

We want to find conditions to determine whether a given
symmetric rational function is in the integral shuffle algebra.
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The Fractional Shuffle Algebra

The fractional shuffle algebra is the shuffle algebra over the ring
K = C(q1, q2) with the same shuffle product as the integral shuffle
algebra.

Theorem (Negut, 2014)

A symmetric rational function p(z1, . . . , zk) is in the fractional shuffle
algebra if and only if it is a Laurent polynomial (p ∈ K[z±1

1 , . . . , z±1
k ])

and it satisfies the wheel conditions:

p(z1, q1z1, q1q2z1, z4, z5, . . . , zk) = p(z1, q2z1, q1q2z1, z4, z5, . . . , zk) = 0.

These conditions are necessary but not sufficient for the integral shuffle

algebra.
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Ideals

Definition

An ideal of a ring R is a subset of R that is closed under addition
and multiplication by elements of R. An ideal can be written as
(a1, . . . , an) where a1, . . . , an are the generators of the ideal.

Examples:

(2) of Z is the even numbers

Ideal form of wheel conditions: p(z1, q1z1, q1q2z1, . . . ) = 0 if
and only if p ∈ (q1q2z1 − z3, q1z1 − z2, q2z2 − z3) of the ring
of Laurent polynomials.

Ideals can also be thought of as R-modules that are contained
in R.
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Quotients

Definition

A quotient R/I of a ring R by an ideal I is the ring of equivalence
classes in the ring where two elements a and b are equivalent if
a− b ∈ I .

Examples:

Z2 = Z/(2) is the integers mod 2

R[x ]/(x) = R

R[x ]/(x2) = {ax + b | a, b ∈ R}
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The Hilbert Scheme of Points in the Plane

The Hilbert scheme Hilbn of n points in the plane is the set of
ideals I ⊂ C[x , y ] such that the dimension of C[x , y ]/I as a vector
space over C is n.
Examples:

C[x , y ]/(x , y) = C⇒ (x , y) ∈ Hilb1

C[x , y ]/(x2, xy , y2) = {ax + by + c} ⇒ (x2, xy , y2) ∈ Hilb3

C[x , y ]/(x) = {a + by + cy2 + . . . } so (x) 6∈ Hilbn for any n
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Relation of Shuffle Algebra to Hilbert Scheme

Theorem (Schiffmann and Vasserot, 2013)

Consider the equivariant K-theory group KT (Hilbn) of the Hilbert
scheme and let

LR =
⊕
n≥0

KT (Hilbn), LK = LR ⊗R K

where R = C[q±1
1 , q±1

2 ] and K = C(q1, q2).
Then LR is a module over the integral shuffle algebra and LK is a
module over the fractional shuffle algebra.
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Ongoing Work

Theorem

Let AR
k be the subset of the integral shuffle algebra consisting of

functions in k variables. Then the following hold:

AR
k is an ideal of R[z±1

1 , . . . , z±1
k ] for all k.

AR
2 is the ideal (z1 ∗ z0

1 , z
0
1 ∗ z0

1 ) of R[z±1
1 , z±1

2 ].

As an ideal of R[z±1
1 , z±1

2 , z±1
3 ], AR

3 is generated by the

elements zd1
1 ∗ z

d2
1 ∗ z0

1 for 0 ≤ d1 ≤ 2, 0 ≤ d2 ≤ 1.
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Ongoing Work

Recall the ideal form of the wheel conditions:

p ∈ (q1q2z1 − z3, q1z1 − z2, q2z2 − z3),

p ∈ (q1q2z1 − z3, q2z1 − z2, q1z2 − z3).

We create a similar condition from the generators of AR
2 :

Theorem

AR
k is contained in the ideal

(z1 ∗ z0
1 , z

0
1 ∗ z0

1 )

of R[z±1
1 , . . . , z±1

k ] for k ≥ 2.
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Plans for Future Work

The first theorem also showed that AR
3 is finitely generated as an

ideal.

• Use this to prove another general condition.

• Find a computer algebra system/algorithm to calculate ideals of
R[z±1

1 , z±1
2 , z±1

3 ], as hand calculations are not feasible:

P(z1, . . . , zk ) ∗ Q(z1, . . . , zl ) =

1

k!l!

∑
sym

P(z1, . . . , zk )Q(zk+1, . . . , zk+l )
∏

1≤i≤k
k<j≤k+l

(zi − q1q2zj )(zj − q1zi )(zj − q2zi )

zi − zj
.

• Try to prove that conditions are sufficient or find new ways to
generate conditions that can be proven.
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Difficulties of the Project: z0
1 ∗ z0

1 ∗ z0
1

z0
1 ∗ z0

1 ∗ z0
1 = 6q3

1q
3
2z

4
1 z

2
2 + (−3q2

1q
2
2 − 3q3

1q
2
2 − 3q2

1q
3
2 + 6q3

1q
3
2 − 3q4

1q
3
2 − 3q3

1q
4
2 − 3q4

1q
4
2 )z3

1 z
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2z
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1 z

4
2
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