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Basic Ideas

Definition

R is a commutative ring with unity.

Definition

Ring of polynomials:

R[x ] =
{
r0 + r1x + · · ·+ rdx

d
∣∣∣ rj ∈ R, rd 6= 0

}
d is the degree of the polynomial.

Example

2− x + x2 ∈ Z[x ], degree 2

π + 2x2 − ix5 ∈ C[x ], degree 5
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More Indeterminates

Definition

k indeterminates x1, . . . , xk :

R[x1, . . . , xk ] = R[x1] · · · [xk ]

=


∑

Finitely many terms
j1,...,jk≥0

rj1,...,jkx
j1
1 · · · x

jk
k

∣∣∣∣∣∣∣∣ rj1,...,jk ∈ R


max(j1 + · · ·+ jk | rj1,...,jk 6= 0) is the degree of the polynomial.

Example

x1x2 + x1x2x3 + 2x51x
2
3 ∈ Z[x1, x2, x3], degree 7

π + 2x21 − ix1x2 + x34 ∈ C[x1, x2, x3, x4], degree 3
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Symmetric Polynomials

Definition

S is the subset of R[x1, . . . , xk ] of polynomials that remain unchanged
when indeterminates are permuted.

Example

If k = 2, then
x1 + x2 ∈ S

since x2 + x1 = x1 + x2.

Example

If k = 3, then
x1 + x2 6∈ S

since x2 + x3 6= x1 + x2, but

x1 + x2 + x3 ∈ S
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Partitions

Definition

A partition λ = (λ1, λ2, . . . , λ`(λ)) is a decreasing sequence of positive
integers, that is, λ1 ≥ λ2 ≥ · · · ≥ λ`(λ) > 0. The Young diagram of λ is
the left-aligned grid of boxes with λi boxes in the ith row.
Park is the set of partitions with `(λ)≤ k. Park,n−k is the set of partitions
whose Young diagram fits inside of box of height k and length n − k .
The conjugate of λ, λ′, is the partition whose Young diagram is the
reflection of the Young diagram of λ across the main diagonal.

Example

Let λ = (3, 2). Then λ ∈ Par2, λ ∈ Par2,3, λ 6∈ Par2,2, λ′ = (2, 2, 1).

λ : λ′ :

Note that λ′ ∈ Park ⇐⇒ λ1 ≤ k .
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Homogeneous Symmetric Polynomials

Definition

hi =
∑

j1+···+jk=i
j1,...,jk≥0

x j11 · · · x
jk
k

hλ = hλ1hλ2 · · · hλ`(λ)

Example

If k = 2:

h0 = 1

h3 = x31 + x21x2 + x1x
2
2 + x32

h(2,1) = h2h1 = (x21 + x1x2 + x22 )(x1 + x2) = x31 + 2x21x2 + 2x1x
2
2 + x32

Theorem (Enumerative Combinatorics Vol. 2)

{hλ |λ′ ∈ Park} is a basis for S over R

Andrew Weinfeld Bases for Quotients of Symmetric Polynomials May 2019 6 / 15



Schur Polynomials

Definition

Let `(λ) ≤ k. Then

sλ = det(hλi+j−i )
`(λ)
i ,j=1

Example

If k = 2:

s(2,1) =

∣∣∣∣h2 h0
h3 h1

∣∣∣∣
= h2h1 − h3h0

= (x21 + x1x2 + x22 )(x1 + x2)− (x31 + x21x2 + x1x
2
2 + x32 )

= x21x2 + x1x
2
2

Theorem (Enumerative Combinatorics Vol. 2)

{sλ |λ ∈ Park} is a basis for S over R.
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Motivation

R = Z
Cohomology ring of the Grassmannian,

H∗(Gr(k , n)) ∼= S/〈hn−k+1, . . . , hn〉

R = Z[q]
Quantum cohomology ring of the Grassmannian,

QH∗(Gr(k , n)) ∼= S/〈hn−k+1, . . . , hn−1, hn + (−1)kq〉

Theorem (Postnikov)

{sλ |λ ∈ Park,n−k}

is a basis (over R) for both quotients; that is, every member of S can
written uniquely as

some member of the ideal +
∑

cλsλ, cλ ∈ R, λ ∈ Park,n−k
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Quotients with hi ’s

Theorem (Grinberg)

Let ai ∈ R. Then
{sλ |λ ∈ Park,n−k}

is a basis for
S/〈hn−k+1 − a1, . . . , hn − ak〉
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Quotients with hi ’s

Example

If k = 2, n = 4:

{s∅, s(1), s(1,1), s(2), s(2,1), s(2,2)}
= {1, x1 + x2, x1x2, x

2
1 + x1x2 + x22 , x

2
1x2 + x1x

2
2 , x

2
1x

2
2}

is a basis for

S/〈h3 − a1, h4 − a2〉
= S/〈x31 + x21x2 + x1x

2
2 + x32 − a1, x

4
1 + x31x2 + x21x

2
2 + x1x

3
2 + x42 − a2〉

For instance:

x41 + x42 = −(x1 + x2)(h3 − a1) + 2(h4 − a2) + 2a2s∅ − a1s(1)
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Power Sums

Definition

pi = x i1 + · · ·+ x ik

pλ = pλ1pλ2 · · · pλ`(λ)

Example

If k = 2:

p3 = x31 + x32

p(2,1) = p2p1 = (x21 + x22 )(x1 + x2) = x31 + x21x2 + x1x
2
2 + x32

Theorem (Enumerative Combinatorics Vol. 2)

If Q ⊆ R, then {pλ |λ′ ∈ Park} is a basis for S over R
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Quotients with pi ’s

Theorem (W)

Let Q ⊆ R. Then
{sλ |λ ∈ Park,n−k}

is a basis for
S/〈pn−k+1, . . . , pn〉

Example

If k = 2, n = 4:
{s∅, s(1), s(1,1), s(2), s(2,1), s(2,2)}

= {1, x1 + x2, x1x2, x
2
1 + x1x2 + x22 , x

2
1x2 + x1x

2
2 , x

2
1x

2
2}

is a basis for
S/〈p3, p4〉 = S/〈x31 + x32 , x

4
1 + x41 〉

For instance:

x41 + x31x2 + x21x
2
2 + x1x

3
2 + x42 = (x1 + x2)p3 + s(2,2)
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Future Directions

ai 6∈ R for both hi ’s and pi ’s.

Writing Pieri’s rule in the basis of the quotients:

hi sλ =
∑

µ/λ has i squares
across i columns

sµ =
∑

µ∈Park,n−k

cλ,µsµ

What is S mod other ideals of symmetric polynomials?

Which other ideals of S give the same basis when modded out?

sλ and pλ are related by representation theory; is this usable?
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