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Abstract

Byzantine Broadcast is an important topic in distributed systems and improving its round com-
plexity has long been a focused challenge. Under honest majority, the state of the art for Byzantine
Broadcast is 10 rounds for a static adversary and 16 rounds for an adaptive adversary. In this paper,
we present a Byzantine Broadcast protocol with expected 8 rounds under a static adversary and ex-
pected 10 rounds under an adaptive adversary. We also generalize our idea to the dishonest majority
setting and achieve an improvement over existing protocols.

1 Introduction

Byzantine Agreement and Byzantine Broadcast are fundamental problems in distributed computing [3,
5, 17] and are important in creating fault-tolerant distributed systems, which allow systems to continue
operating reliably and correctly even when some of its components fail. This problem has various
important applications, including in cryptocurrency and blockchain protocols [1, 9, 15] or state-machine
replication [19]. An important aspect of Byzantine Agreement and Broadcast protocols, which we focus
on in this paper, is its round complexity, because by improving the round complexity, users in the system
will reach agreement faster, which improves the speed and efficiency when applied in real world systems.

In the Byzantine Agreement problem, n users are each given an input bit and they must come to an
agreement and output the same value, even in the presence of up to f corrupt users. Throughout this
paper, we will use n to denote the total number of users in the system and f to denote the maximum
number of corrupt users. A variation of the Byzantine Agreement problem is Byzantine Broadcast, where
a single selected leader sends a bit b to all n users, and the honest users must agree on this bit. If the
leader is honest, then all honest users must output the leader’s proposed bit.

In this paper, we focus mainly on Byzantine Broadcast. However, we will also show that it is
possible to convert our honest majority protocol from Byzantine Broadcast to Agreement by increasing
the expected round complexity by 2 rounds. Note that Byzantine Agreement is only possible under
honest majority, where f < n/2. Therefore, when we consider the problem under the dishonest majority
scenario, we will only discuss Byzantine Broadcast.

There have been many existing works related to Byzantine Broadcast. Dolev and Strong [8] have
shown a deterministic protocol that achieves f + 1 round complexity assuming digital signatures, which
is also proved to be the lower bound for any deterministic protocol. However, this f + 1 lower bound
does not apply in randomized protocols. Under honest majority, many works [2, 10, 11, 16] have shown
protocols that achieve expected constant round complexity, including a paper by Abraham et al. [2]
that had expected 10 round complexity for a static adversary, and 16 round complexity for an adaptive
adversary, assuming digital signatures and public-key infrastructure, which to our knowledge is the best
existing result thus far. Under dishonest majority, many protocols [6, 12, 13], have achieved sublinear
round complexity. In particular, recently, a work by Wan et al. [20] has shown a protocol with expected
Θ(( n

n−f )2) round complexity, assuming public-key infrastructure and an idealized signature scheme. This

means that when f = (1 − ε)n where ε ∈ (0, 1) is a small constant, this protocol achieves Byzantine
Broadcast in expected constant rounds.

However, the optimal round complexity for Byzantine Broadcast is still unknown. Garay et al. [13]
proved a Θ(n/(n − f)) lower bound for any randomized Byzantine Agreement / Broadcast protocol.
This result is interesting, but there remains a gap between this lower bound and the round complexity of
existing protocols. Therefore, further improving the round complexity is important in order to determine
the optimal result.

In this paper, we improve the round complexity of honest majority Byzantine Broadcast to expected 8
rounds under a static adversary, as well as show how we can convert the protocol to Byzantine Agreement
under an honest majority by adding two rounds. We also show how we can modify the Byzantine
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Broadcast protocol to be resilient under an adaptive adversary in expected 10 rounds. Furthermore, we
discuss how we can modify the work by Wan et al. [20] to reduce the round complexity of dishonest
majority Byzantine Broadcast.

First, in section 2, we provide the problem definition and our high level intuition. In section 3, we
introduce our protocol for honest majority Byzantine Broadcast under a static adversary, as well as
describe how the protocol can be converted to an honest majority Byzantine Agreement protocol. In
section 4, we explain how this protocol can be modified to be resilient against an adaptive adversary,
and in section 5, we compare our protocol to a previous paper by Abraham et al. [2], explaining how
our protocol is able to achieve a reduced round complexity in comparison. Finally, in section 6, we show
a protocol which improves the round complexity for the dishonest majority setting.

2 Preliminaries

2.1 Model and Problem Definition

Assumptions: Our protocol assumes a synchronous setting, meaning that a message sent by an honest
user in round r is guaranteed to be received by another honest user before round r + 1. We also
require a random leader election oracle. This leader election oracle can be instantiated using various
methods such as with common-coin protocols [4][18], or with pseudo-random functions including verifiable
random functions [7][20]. We will also use digital signatures as well as a public-key infrastructure. These
assumptions are the same as compared to the previous work [2].
Adversary: We consider two types of adversaries, namely static and strongly rushing adaptive adversary.
A static adversary cannot corrupt users in the middle of the protocol. A strongly rushing adaptive
adversary, on the other hand, can corrupt any user at any point of the protocol, as long as the total
number of corrupted users is upper bounded by f . Furthermore, if the adversary corrupts a user u in
round r, it can not only inject additional messages into round r, but also alter or erase u’s round-r
messages before they reach other users.
Problem definition: We mainly focus on the Byzantine Broadcast problem in this paper. In this
problem, suppose there are n users in the system. One of the users is the designated sender whose
identity is known to all other users. At the start of the protocol, the designated sender will receive a bit
b. All users then interact to learn the sender’s bit b. At the end of the protocol, each user i outputs a
bit bi. We say that the protocol is correct and achieves Byzantine Broadcast if it meets the following
conditions:

• Consistency: for any honest users i and j, bi = bj .

• Validity: if the leader is honest, then for any honest user i, bi = b.

• Liveness: all honest users will eventually terminate.

2.2 Previous work and high level intuition

On the high level, the dilemma for Byzantine Broadcast / Agreement lies in the indistinguishability
between honest and dishonest users. We illustrate this dilemma using the following example. Suppose
a user u does not respond to another user v’s query, then v knows that u must be corrupt. However, v
cannot prove u’s maliciousness to another user w since w cannot distinguish between (1) u not responding
to v’s query and (2) v dropping u’s response and framing u as corrupt. Most previous works simply
ignore this dilemma and cleverly get around it using properties that hold regardless of the adversary’s
actions. For example, in Dolev and Strong’s protocol [8], they used the fact that a set of f + 1 votes
must contain at least one honest user’s vote. Another commonly used trick when f < n/3 is to require
a user to gather 2n/3 votes on the same bit before committing. If an honest user receives 2n/3 users’
votes on the bit b ∈ {0, 1}, then at least 2n/3 − f > n/3 honest users have voted on b; thus, no other
honest users can observe n− f votes on 1− b.

These previous works do not detect and punish corrupt users. This means that corrupt users can
perform some malicious actions, be detected, yet still participate in the rest of the protocol. This is why
most previous works have to upper bound the number of corrupt users by n/2 or n/3 and their protocols
do not work for dishonest majority.
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Recap of Wan et al.’s Byzantine Broadcast Protocol: Wan et al. [20] provide an interesting
observation on the previously described dilemma. Recall that in the previous example, a user w receives
v’s accusation on u for not responding, yet w cannot distinguish whether u is corrupt or honest.

However, w can still learn that at least one of u and v is corrupt, assuming that honest users always
follow the protocol and never accuse each other. While w cannot be convinced of u or v’s maliciousness
just by one accusation, if enough accusations are gathered, for example, if f + 1 users have accused u as
corrupt, then w can be convinced that u must be a corrupt user. Further, w can use the f+1 accusations
as proof to convince other honest users that u is corrupt. In order to avoid being proved as corrupt, the
adversary should avoid easily detected malicious behavior and pretend to follow the protocol just like an
honest user. This would restrict the power of the adversary and thus help honest users reach consensus.

Based on this observation, they construct a data structure called the trust graph. Each user maintains
its own trust graph. In a user w’s trust graph, the nodes represent the users and an edge (u, v) exists
iff w thinks that u and v “trust” each other, i.e., w has not received any accusation between u and v.
Initially, all honest users’ trust graphs are complete graphs. But during the protocol, edges are removed
as users detect malicious behavior from other users. Note that an accusation between two users u and v
must be signed by either u or v so that the adversary cannot frame accusations between honest users.

Without getting into the details, the most important property of the trust graph structure is that
in any honest user’s trust graph, the set of honest users must be fully connected. Even though honest
users might have different trust graphs, this property is always satisfied. This property also implies the
following:

• If an edge (u, v) is removed from an honest user’s trust graph, then at least one of u and v is
corrupt.

• If a user’s degree is less than n − f , then it has been accused by at least f + 1 users. It is then
proved as corrupt and should be removed from the trust graph. Therefore, any node in any honest
user’s trust graph must have degree at least n− f .

Using graph theory, it can be shown that a connected graph where every node has degree at least n− f
must have diameter less than Θ(n/(n− f)). This result is crucial as the round complexity in [20] is tied
with the diameter of the trust graph.

Using the trust graph data structure, they construct a primitive called “trustcast”. The trustcast
is a weaker primitive of consensus, similar to reliable broadcast or gradecast. Typically, these weaker
primitives can only achieve one of consistency or liveness. The trustcast protocol differs from previous
primitives because it is strongly tied with the trust graph structure. In the trustcast protocol, a sender
s wants to send a message to all other users. At the end of the trustcast protocol, for any honest user
u, either u receives a message from the sender or s is removed from u’s trust graph. The latter implies
that s has been proved by u as a corrupt user and can no longer participate in the rest of the protocol.
Finally, this trustcast primitive is bootstrapped to full consensus using a random leader election oracle,
even under dishonest majority.

We think that the trust graph data structure and the trustcast primitive in [20] are very interest-
ing. However, their protocol focuses on dishonest majority and only cares about the asymptotic round
complexity. We want to further improve the round complexity and adapt it to the honest majority
setting. Inspired by the trust graph idea, we adopt a similar method for honest majority. We provide
our technical roadmap in Section 2.3.

2.3 Technical highlight

Similar to the trust graph idea in [20], we want users to keep track of whether other users are corrupted
or not. To do this, each user u maintains an n× n array u.A, initialized such that u.A[v, w] = 1 for all
v, w. We define u.A[v, w] = 1 to represent that v and w trust each other in u’s view. If v accuses w as
corrupt, or the other way around, we will set u.A[v, w] and u.A[w, v] to 0. The array is symmetric, i.e.,
u.A[v, w] is always the same as u.A[w, v]. We can think of them as two pointers pointing toward the
same variable. If we change u.A[v, w], then u.A[w, v] is automatically changed as well.

This array resembles how the trust graph is stored in [20]. However, the way we maintain and use
this array is much simpler. Initially, we set u.A[v, w] = 1 for any u, v and w, representing that all users
trust each other at the start of the protocol. During the protocol, this array is updated in the following
ways:
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• If v is supposed to send a message yet u does not hear from v in this round, u knows that v is
corrupt. It then sets u.A[u, v] = 0 and sends a Not-Trust message of v, which is a signature from
u of the form

Not-Trust(u, v) = sigu(“not trust”, v),

to all other users in the next round.

For any user w, upon receiving Not-Trust(u, v), it will set w.A[u, v] = 0 and relay the Not-Trust
message in the next round.

• If u receives equivocating messages from v, u will set u.A[v, w] = 0 for all w. It will also relay the
signed equivocating messages to all other users in the next round.

• We say that a user v is proved to be corrupt by an honest user u iff u.A[v, w] = 0 for all w.

Note that we set u.A[v, w] = 0 iff at least one of v and w is corrupt. Therefore, for any honest users u
and v, ∑

w

u.A[v, w] ≥ # of honest users = n− f. (1)

Similarly, for any honest users u, v and w, u.A[v, x] · u.A[w, x] = 1 as long as x is honest. Therefore, we
have ∑

x

(u.A[v, x] · u.A[w, x]) ≥ n− f. (2)

Based on Equation 1 and 2, an honest user u can constantly check its array u.A to further detect corrupt
users. For any honest user u,

• If
∑

w u.A[v, w] < n− f , then v must be a corrupt user. u can then set u.A[v, w] = 0 for all w.

• If
∑

x u.A[v, x] · u.A[w, x] < n − f , then at least one of v, w must be corrupt. u can then set
u.A[v, w] = 0.

This guarantees that Equation 1 and 2 hold for any v or for any v, w that has not been proved to be
corrupt by u. This property will be used in our proof of the protocol’s correctness.

We now explain the structure of and intuition behind the protocol itself. The basic goal of Byzantine
Broadcast is that when the leader is honest, all honest users will agree on the leader’s message and
terminate. However, when the leader is dishonest, any malicious behavior by the leader will be detected
by the honest users, so honest users will not commit on different messages. Specifically, we want the
protocol to satisfy that

1. if the leader of an epoch i is honest, then all honest users terminate and output the leader’s proposed
bit in epoch i;

2. if two honest users terminate in the same epoch, then they must output the same bit; and

3. after an honest user terminates on bit b ∈ {0, 1}, leaders in future epochs cannot propose 1 − b;
therefore, other honest users cannot output 1− b in future epochs.

The first property ensures that our protocol satisfies liveness and validity. The second and the third
properties guarantee that our protocol satisfies consistency.

We construct a protocol which proceeds in multiple epochs, that satisfies these properties. In each
epoch, a leader is selected who observes the results of previous epochs and proposes a bit for other users
to agree on. The proposal is accompanied by proofs showing that the leader has indeed followed the
protocol. Note that in the first epoch, the leader is simply the designated sender and should send its
input bit. In the rounds following the leader’s proposal, users exchange messages to determine if the
leader was honest and if they should terminate. These messages are also used to construct the leader’s
proof for its proposal in future epochs.

Specifically, each epoch contains a Propose and Vote round, and 2 Commit rounds. The basic purpose
of each round is:

1. Propose: The leader sends its proposal on a message m ∈ {0, 1}, accompanied by a proof for the
proposal, to all users.
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2. Vote: All users relay the proposal they received in a message that we call a “vote”. This allows
users to check if the leader sent equivocating proposals to different users, in which case they can
prove that the leader was dishonest.

3. 1st round of Commit: If a user did not detect equivocation from the leader, then they send
commit messages containing a commit evidence E . The commit evidences are sets of votes from
other users and are used as proofs for a future leader’s proposal. It makes sure that if an honest
user has already committed, the leader cannot propose a different bit in future epochs.

4. 2nd round of Commit: All users relay the commit messages they received in the first round of
Commit to all other users. This ensures that if a dishonest user sent a commit evidence to only
some honest users in the previous round, the message will still be relayed in this round so that all
honest users receive all commit evidences.

Throughout the protocol, users also check if they have received at least f + 1 commit messages on the
leader’s proposal, meaning at least one honest user has committed, at which point they can terminate.

Intuitively, these steps are necessary to ensure that the protocol is correct because a dishonest leader
can behave maliciously either by (1) proposing equivocating messages to different users, or (2) by only
sending proposals to some users, which may result in some users committing but not others. Through the
vote round, we guarantee that users will detect the leader’s equivocation in the first attack. Through the
commit rounds, we guarantee that even when only some honest users commit as a result of the second
attack, other honest users will be aware of this after receiving the commit messages, and not commit
on a different message in future epochs. Namely, dishonest leaders will be unable to propose a different
message in future epochs that would be accepted by the honest users. Throughout the protocol, users
also keep track of any attacks and malicious behavior through their array A, allowing them to keep a
record of which users may be dishonest, and therefore being more resilient to a dishonest leader’s attacks.

We explain the protocol in more detail and provide more concrete proofs for the correctness of the
protocol in section 3.

3 Honest Majority Protocol

In this section, we present our protocol under honest majority. We first describe some implicit operations
that users always follow throughout the protocol. Then, we define the notations used in the protocol. We
describe our protocol in Section 3.1, prove that it is correct in Section 3.2 and analyze its performance
and other variations in Section 3.3 and 3.4.
Implicit assumptions / operations First, whenever an honest user u receives a new message, u relays
it to all other users. This includes messages sent in the protocol, proof of equivocation and Not-Trust
messages. This occurs in parallel with any new messages sent in the next round, so relaying does not
add to the round complexity. Second, whenever a user sends a message m, it is always accompanied by
a signature on the message m and the current round number. This prevents the adversary from reusing
old signatures in previous rounds.

Throughout the protocol, each user u maintains their array u.A. In any round,

• if v is supposed to send a message yet u does not receive any, then u sets u.A[u, v] = 0 and sends
a Not-Trust message of v to all other users.

• if u receives a Not-Trust message between v and w, then u sets u.A[v, w] = 0.

• if u detects equivocating signatures from v, then u sets u.A[v, w] = 0 for all w.

After each round in the protocol, u performs the following array maintenance:

• For every v, if
∑

w u.A[v, w] < n− f , then u sets u.A[v, w] = 0 for all w.

• For every v, w, if
∑

x(u.A[v, x] · u.A[w, x]) < n− f , then u sets u.A[v, w] = 0.

Recall that we say a user v is proved to be corrupt w.r.t. u iff u.A[v, w] = 0 for all w.

Fact 3.1. If v has not been proved to be corrupt w.r.t. u, then
∑

w u.A[v, w] ≥ n − f must hold.
Otherwise, v would be detected by the array maintenance and thus proved to be corrupt.
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Commit evidence: We define some notations regarding commit evidence that will be used in the
protocol. If a set E contains f + 1 distinct users’ votes on message m in epoch e, then we say that E is
a commit evidence for (e,m). We call a commit evidence for (e,m) fresher than a commit evidence for
(e′,m) iff e > e′.

In our protocol, users send commit messages containing their commit evidence in the commit round.
We say that a commit evidence is from user u if it is in the commit message from user u. A commit
evidence from u is considered valid by another user v iff (1) the commit evidence contains at least f + 1
votes on the same message and (2) u has not been proved to be corrupt w.r.t. user v. This means that
if a user is already proved to be corrupt, then we will not consider its commit evidence in the protocol.

3.1 Protocol

We outline our Byzantine Broadcast protocol as follows:

Byzantine Broadcast under honest majority

For each epoch e = 1, 2, . . .:

1. Round 1 (propose):

• Send: If e = 1, the designated sender sends its input bit to all users. If e ≥ 2, the leader of
this epoch Le sends the freshest valid commit evidence 1 it has seen to all users. If Le has
not received any commit evidence in the previous epochs, it sends a random bit.

• Receive: Every user u ∈ [n], upon receiving Le’s proposal, verifies that the commit evidence
in the proposal (if any) is as fresh as all other valid commit evidence u received. If u receives
a random bit, check that they have not received any commit evidence. If not, meaning u
received an invalid proposal, u ignores the proposal and pretends that it has not received
from the leader.

2. Round 2 (vote): For every user u ∈ [n],

• Send: if u received m from the leader, then send m to all users. If u did not receive from the
leader, then send ⊥ to all users.

• Receive: For every user v ∈ [n], if u receives a vote on ⊥ from v, then set u.A[v, Le] = 0.

3. Round 3 (1st round of commit): For every user u ∈ [n],

• Send:

– If u.A[u, Le] = 1, i.e., u still trusts the leader, then u sends a message of the form
(comm, e, E) to all users, where the commit evidence E contains a set of votes for m from
all users v such that u.A[u, v] · u.A[v, Le] = 1, meaning that u trusts v and v trusts the
leader.

– Else, send the message (comm, e,⊥) to all users.

• Receive: For every user v ∈ [n]: if v receives a non-⊥ commit message from u, v verifies
whether the commit evidence is valid. If not, v ignores u’s commit message.

4. Round 4 (2nd round of commit): For every user u ∈ [n],

• Send: Relay any commit messages received in the previous round to all users.

• Receive: If u did not receive any commit message from v in both rounds of commit, then for
all w such that u.A[w, v] = 1, u sets u.A[u,w] = 0 and sends Not-Trust(u,w) to all users in
the next round. 2

Terminate: If a user u has received f + 1 commit messages for (e,m), it relays the f + 1 commit
messages as proof of termination to all other users. It then outputs m and terminates.

1Here, we require the commit evidence to be valid. So commit evidences from users proved to be corrupt won’t be
considered.

2This step is slightly counter intuitive. We will explain its reason in the proof of Lemma 3.2.
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3.2 Proof of Correctness

In this section, we prove that our honest majority protocol satisfies the consistency, validity, and liveness
conditions. First, we show that throughout the protocol, we never cause honest users to distrust each
other, i.e., for any honest users u, v and w, u.A[v, w] = 1 always holds.

Lemma 3.2. For any honest users u, v and w, u.A[v, w] = 1 holds throughout the protocol.

Proof. We consider all the possible cases where u sets u.A[v, w] to 0 and show that in all those cases,
at least one of v and w is corrupt. In our protocol, a user u will update its array u.A when (1) u
fails to receive from another user, (2) u receives a new Not-Trust message or (3) u detects equivocating
signatures. It is clear that these scenarios will not happen between honest users. Therefore, we only
need to consider non-trivial cases such as when user u receives from v yet ignores the message because
it is invalid. We analyze all possible cases according to the order they appear in the protocol.

Propose round: an honest user u sets u.A[u, Le] = 0 (Le is the leader of epoch e) if and only if

1. u does not receive any proposal from Le or

2. u has a valid commit evidence E fresher than the commit evidence in Le’s proposal.

In the first case, clearly Le is corrupt. We now focus on the second case. We will use proof of contradiction
and assume that Le is an honest user. Since E is a valid commit evidence, it must come from a user v
who has not yet been proved corrupt w.r.t. u. By Fact 3.1, this implies that∑

w

u.A[v, w] ≥ n− f ≥ f + 1.

So there must exist an honest user w such that u.A[v, w] = 1.

• if w received E from v in the first round of commit, w would relay E to u and Le in the second
round of commit. This violates our assumption that Le has not received E .

• if w received a commit message containing E ′ 6= E from v in the first round of commit, then w
would forward E ′ to u. u would then detect equivocation from v and prove v to be corrupt.

• if w did not receive from v in the first round of commit, w would send a Not-Trust message on v
to all other users. This will cause u to set u.A[v, w] = 0, contradicting our assumption once again.

In all these cases, we reach a contradiction. Thus, Le must be corrupt.

Vote round: An honest user u sets u.A[v, Le] = 0 if v votes on ⊥. v voting on ⊥ implies that v has not
received a valid proposal from the leader Le. Therefore, at least one of v and Le must be corrupt.

Commit round 1: An honest user u sets u.A[u, v] = 0 if (1) u does not receive v’s commit message or
(2) v’s commit message contains invalid commit evidence. We focus on the second case. If v’s commit
evidence is not valid, then either v is already proved to be corrupt or the commit evidence does not
contain f + 1 votes on the same message. In either possibility, v must be a corrupt user.

Commit round 2: An honest user u sets u.A[u,w] = 0 if there exists another user v such that (1) u
does not receive v’s commit message and (2) u.A[v, w] = 1. Again, we use proof of contradiction and
assume that w is an honest user.

• If w received a valid commit message from v in the first round of commit, w would forward it to
u, contradicting condition (1);

• If w did not receive a valid commit message from v in the first round of commit, w would send a
Not-Trust message to u and thus u.A[v, w] should equal 0, contradicting condition (2).

In both cases, we have reached a contradiction. Thus, w must be corrupt.

We have analyzed all the possible cases in the protocol and showed that an honest user will never set
u.A[v, w] to 0 for any honest users v and w. Given this, it is also clear that the array maintenance after
each round will not alter u.A[v, w] for honest v, w as well. Therefore, for any honest users u, v and w,
u.A[v, w] = 1 always holds. This ends our proof.
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In fact, Lemma 3.2 is the hardest part in our proof. We now prove that the protocol is correct using
similar proofs to [2]. First, we show that it satisfies consistency, which means that all honest users must
output the same bit. In other words, if an honest user commits, then no other user can commit on a
different message.

Lemma 3.3. Suppose an honest user u generates a commit evidence on m∗ in epoch e. If a commit
evidence for (e,m) exists, then m = m∗.

Proof. The commit evidence for (e,m) contains votes from at least f + 1 users for m, at least one of the
votes must come from an honest user v. According to the protocol, v would have received the leader’s
proposal for m and forwarded it to all other users, including u. If m 6= m∗, u would have detected the
leader’s equivocation and would not have committed. Therefore, m = m∗.

Lemma 3.4. If at the start of epoch e, (1) every honest user has a commit evidence for (e′,m), and (2)
all conflicting commit evidence are less fresh, then the above two conditions will hold at the end of epoch
e.

Proof. We will prove this by contradiction. Suppose a user is able to acquire a fresher commit evidence
for m′ 6= m. Then, it must receive a vote for m′ from at least one honest user u in epoch e. However, at
the start of epoch e, u has a commit evidence for (e′,m), so for u to vote for m′, the leader must show
commit evidence fresher than (e′,m), which contradicts condition (2).

We can then use induction to show that these conditions will continue to hold in all later epochs.
Therefore, if an honest user commits on m in epoch e, all honest users will receive its commit evidence
which is the freshest in epoch e. Then, in all future epochs e′ > e, no honest user can see a commit
evidence for m′ 6= m. This leads to our proof for consistency.

Theorem 3.5 (Consistency). If two honest users output m and m′ respectively, then m = m′.

Proof. Suppose honest user u outputs m in epoch e. After the commit phase of epoch e, every honest
user receives a valid commit evidence for (m, e). Furthermore, due to Lemma 3.3, there cannot be a
commit evidence for (m∗, e) in epoch e for any m∗ 6= m. Thus, the two conditions in Lemma 3.4 hold
at the end of epoch e. Therefore, in all future epochs, no commit evidence for a value other than m can
be formed. All honest users can only commit and output on m in future epochs.

Next, we show that the protocol satisfies validity, which means that if the leader is honest, then all
honest users must output the leader’s proposed bit, and liveness, meaning that everyone will terminate.

Theorem 3.6 (Validity and Liveness). If the leader Le in epoch e is honest, then every honest user will
terminate in that epoch.

Proof. In Lemma 3.2, we have shown that for any honest users u, v and w, u.A[v, w] = 1 holds throughout
the protocol. Since the leader Le is honest, this implies that for any honest user u, u.A[u, Le] = 1.

In the propose round, Le’s proposal will be accepted by all honest users. Otherwise, if an honest user
u ignores the leader’s proposal, u would set u.A[u, Le] to 0, contradicting Lemma 3.2.

In the vote round, all honest users will vote on Le’s proposal and receive each other’s votes. These
votes then comprise a commit evidence. In the first round of commit, all honest users would receive each
other’s commit messages. Each honest user would receive at least n − f ≥ f + 1 commit messages on
the leader’s proposal. This matches the termination condition and all honest users will terminate on the
same message.

3.3 Round and Communication Complexity

The expected round complexity of our honest majority protocol is 8 rounds. This is because each epoch
takes 4 rounds, and by Theorem 3.6, if the leader Le is honest, then all users will reach the terminate
condition in the first round of commit and terminate one round later.

With random leader selection, it takes n/(n− f) ≤ 2 epochs in expectation to get an honest leader.
Therefore, the entire protocol will terminate in expected 8 rounds.

The communication complexity is Õ(n4). This is because in each round, O(n) users are sending
messages to O(n) other users. Since users must relay any new messages it receives, the total message
size is O(n2) because there are at most O(n2) Not-Trust messages that need to be relayed. This results
in a final global communication complexity of Õ(n4). Our result is far from the current optimal which
is Õ(n2). Reducing the communication complexity is a direction for future work.
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3.4 Conversion from Byzantine Broadcast to Agreement

The protocol described in this paper only solves the Byzantine Broadcast problem, but under honest
majority, being able to solve Byzantine Agreement, where all users start with an input bit, is also
important. Converting from Byzantine Agreement to Broadcast can be achieved by adding a round at
the beginning of the protocol where the leader sends its input bit to all users.

However, the conversion from Byzantine Broadcast to Agreement for our protocol is not as trivial
and requires adding 2 “pre-rounds” to the beginning of our protocol, resulting in a Byzantine Agreement
protocol with expected 10 round complexity, assuming honest majority. This round complexity is the
same as the state of the art in [2].

In the first round that we add, all users send their input bits to all other users. In the second round,
all users send votes on every bit they received, which contains their signature, to all other users. Now, we
can proceed with our Byzantine Broadcast protocol, with the leader proposing the bit b that it received
the majority of signatures on. When users receive this proposal, they will check that they did not receive
1− b as a valid input bit from more than n/2 users.

Intuitively, we can think of a set of f + 1 votes on any bit b as an initial commit evidence. If all
honest users have the same input bit b, they would hold a commit evidence for b. If the leader proposes
1− b, the leader will be proved as corrupt and the proposal will not be accepted. We describe what the
users do in each of the pre-rounds more specifically below.

1. Pre-round 1: Every user u ∈ [n] sends its input bit b ∈ {0, 1} to all users.

2. Pre-round 2: Every user u ∈ [n] performs the following:

• Send: Relays the input bits received from other users in the previous round.

• Receive: If u did not receive the input bit from v, then for all w such that u.A[w, v] = 1, u
sets u.A[u,w] = 0 and sends Not-Trust(u,w) to all users in the next round.

Lemma 3.7. For any honest user u, at the end of the Pre-round 2, for any user v, either (1) u has
received v’s input bit or (2) v has been proved to be corrupt w.r.t. u.

Proof. If u has not received v’s input bit, then by the protocol, u would set u.A[u,w] = 0 for all w such
that u.A[w, v] = 1. Therefore, u.A[u,w] +u.A[w, v] ≤ 1 for all w. By summing this up for all w, we have∑

w

u.A[u,w] +
∑
w

u.A[w, v] =
∑
w

(u.A[u,w] + u.A[w, v]) ≤ n. (3)

By Lemma 3.2, u.A[u,w] = 1 for all honest w; thus,
∑

w u.A[u,w] ≥ n−f . Combining this with Equation
3, we have ∑

w

u.A[w, v] ≤ n−
∑
w

u.A[u,w] ≤ f.

This implies that v must be a corrupt user. By the array maintenance mechanism, u will set u.A[w, v]
to 0 for all w. Therefore, v is proved to be corrupt w.r.t. u.

Now, we can invoke our Byzantine Broadcast protocol from section 3, where in epoch e = 1, the
propose round is executed as follows:

• Propose: Suppose the leader of the first epoch is L,

– Send: Let S be the set of users not proved to be corrupted w.r.t. L. By Lemma 3.7, L has
received the input bit from every user in S. L proposes the majority among the input bits in
S and uses the input bits (with signatures) in S as proof.

– Receive: For any user u, upon receiving the leader’s proposal, verify that the proof contains
the input bits for every v not proved to be corrupt w.r.t. u.

The intuition here is that if L is honest, then it will relay all the Not-Trust messages to other honest
users. So if a user is proved to be corrupt w.r.t. L, then it will be proved to be corrupt w.r.t. any other
honest user in the next round. Therefore, if the leader is honest, all honest users will accept the leader’s
proposal. After this propose round, the protocol can be run identically as in the Byzantine Broadcast
protocol.

We can also show this satisfies the additional validity condition that if all honest users start with the
same input bit b, then they all commit on b. This is because all honest users would send b in the first
pre-round and vote for other honest users sending b in the second pre-round, so at least half of the initial
bits would support b, and an honest leader would propose b.
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4 Adaptive Adversary

Our protocol can be modified to be resilient against a strongly rushing adaptive adversary. This means
the adversary can adaptively decide which users to corrupt each round as long as the number of corrupt
users is upper bounded by f , and it can decide which users to corrupt in round r after observing the
messages sent in round r. After corrupting a user in round r, it can erase, alter, or inject additional
messages in the same round. This creates a problem for our original protocol because it means that, after
learning the leader’s identity in the Propose phase of each epoch, the adaptive adversary can repeatedly
corrupt the leader in each epoch and generate equivocating proposals, preventing users from committing.
In a paper by Abraham et al. [2], they describe modifications that allow their protocol to be resilient
against a strongly rushing adaptive adversary. We apply the same ideas in our protocol.

Overall, we want to ensure that the adversary cannot forge proposals from the leader even if the
adversary corrupts immediately after the leader election. To do this, we make two main changes to the
protocol. First, we postpone the leader election until the Propose round is over. In the Propose round,
every user acts as a potential leader and sends a proposal to all users. After all the proposals have been
delivered, the leader is elected via a common-coin protocol [4]. The leader election can be performed in
parallel with the Vote round, where users continue to vote on all proposals, acting as if all of them could
be a potential leader. After the leader is revealed, we proceed to the Commit rounds where only votes
on the proposal from the elected leader are considered. All other votes and proposals are simply ignored.

Second, we must ensure that the adversary still cannot forge proposals if it corrupts the leader after
the Propose phase. We do this by adding another round to allow users to “prepare” their proposals. We
say that a proposal is prepared iff it is signed by at least f + 1 distinct users, at least one of which must
be an honest user.

• In the first round of Propose, users send their proposals to all users.

• In the second round of Propose, users sign all the proposals they have received and relay them to
all other users.

After the leader’s identity is revealed, a user u votes on a message m iff (1) u received a valid proposal on
m from the leader in the first round and (2) u received at least f + 1 distinct signatures on the proposal
in the second round. Note that

• If the leader is honest during Propose, then all honest users would receive the leader’s proposal
and relay it. Therefore, all honest users would receive a prepared proposal.

• For any user u and leader L, if u.A[u, L] = 1 at the end of Propose, then u would receive a prepared
proposal. This is because our array maintenance guarantees that

u.A[u, L] = 1 =⇒
∑
v

u.A[u, v] · u.A[v, L] ≥ f + 1,

for any v such that u.A[u, v] = 1 and u.A[v, L] = 1, v would receive the leader’s proposal in the
first round and relay it to u in the second round.

Therefore, the proof of correctness in Section 3.2 still applies.
We outline a summary of the steps for each epoch of the adaptive adversary protocol below.

• Round 1 (Propose): Every user u ∈ [n] sends its proposal to all other users. The proposal is
determined in the same way as the static adversary protocol.

• Round 2 (Propose): Every user u ∈ [n] signs and relays any proposal it received to all other users.

• Elect: Every user u ∈ [n] participates in a threshold coin-tossing scheme from [4] to elect a leader
Le. The elect round occurs in parallel with Vote. Therefore, it does not contribute extra round
complexity.

• Round 3 (Vote): A user votes on every message m that it has received a prepared proposal on.

• Round 4 (Commit): If a user u has received votes on the prepared proposal from the elected
leader from every user v such that u.A[u, v] · u.A[v, Le] = 1, send a commit message and evidence
to all users.

• Round 5 (Commit): Same as the static adversary protocol.
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Terminate: Same as the static adversary protocol.

Overall, our round complexity under a strongly-rushing adaptive adversary is now 5 rounds per epoch,
and expected 10 rounds in total, and proofs of correctness are still the same as the static adversary case.

5 Comparison to [2]’s Byzantine Agreement Protocol

Our protocol improves the round complexity of Byzantine Broadcast under the honest majority setting,
in comparison to the state of the art results provided in a previous paper by Abraham et al. [2] which
showed protocols to achieve both Byzantine Agreement and Broadcast in expected 10 rounds for the static
adversary and 16 rounds for the adaptive adversary. In this paper, we mostly focus on the Byzantine
Broadcast case. We compare this protocol with ours and explain how our protocol is able to achieve
Byzantine Broadcast with fewer rounds.

Under a static adversary, the protocol in [2] has epochs each consisting of 4 rounds: status, propose,
commit, and notify. In the propose rounds for both protocols, the leader sends its proposal. Their
commit round corresponds to our vote round, and their notify and status rounds correspond to our two
commit rounds. While our protocol shares similar structures with theirs, the detailed way in which each
round is executed is very different. By maintaining an array that records the trust relationship for each
user, we restrict the power of the adversary and thus reduce the round complexity.

Specifically, we are able to reduce the expected round complexity from 10 to 8 for our protocol
because we do not need the extra “pre-round” or a terminate round, as used in their protocol. Their
protocol requires a “pre-round” for Byzantine Broadcast where the leader first broadcasts its input bit
to all users. This is because their protocol begins with the status round, where all users must start with
a current accepted value to send to the leader, and the leader uses this to construct its proposal. We
can avoid this by having our protocol begin with the propose round, and in epoch 1 the leader simply
proposes its input bit. Furthermore, when the leader is honest, users will reach termination in only three
rounds. This spares us another round.

This advantage further reduces the round complexity under the adaptive adversary setting. In [2],
their adaptive adversary protocol requires 16 rounds due to the addition of two rounds to prepare the
proposal and a separate elect round for each epoch. We only need one round to prepare a proposal, and
we are able to run the elect round in parallel with the vote round, resulting in a total of 10 rounds for
the adaptive adversary.

However, the communication complexity in [2] is Õ(n2), which is better than ours.

6 Dishonest Majority Protocol

In this section, we show how to adapt our protocol for the dishonest majority scenario, where f > n/2.
Our protocol achieves an improved round complexity in comparison to the current best result obtained
by the Byzantine Broadcast protocol from [20].

6.1 Recap of [20]’s dishonest majority Byzantine Broadcast protocol

As described in section 2.2, in Wan et al.’s protocol [20], each user w maintains a trust graph, where
the nodes represent users and an edge (u, v) represents that u and v trust each other in w’s view. If
a user u thinks that v is dishonest, then they send a Distrust message to other users, which is similar
to the Not-Trust messages we used in our honest majority protocol. In [20], Wan et al. also proved
that all honest users will remain direct neighbors with each other in their trust graphs throughout the
protocol. Also as mentioned in section 2.2, every node in the trust graph must have degree at least n−f ,
so the diameter of this trust graph, which we will call d for the rest of the paper, is upper bounded by
Θ(n/(n− f)).

Then, users in the trust graphs exchange messages with each other using the “TrustCast” protocol,
which required d rounds. To summarize how the TrustCast protocol works, suppose a sender s wants to
send a signed message m to everyone. Then, for every round 1 ≤ r ≤ d, each user u checks if they have
received a message signed by s, using a verification function Vf to check the validity of the message. If
u does not receive a valid message, then u knows that any of their direct neighbors that are distance
less than r away from s in u’s trust graph must be dishonest. Otherwise, they would have received s’s
message within r − 1 rounds and sent it to u in the rth round. This process guarantees that by the end
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of the TrustCast protocol, any honest node will either receive a valid message signed by s or remove s
from their trust graphs, which is proved in Theorem 4.1 of [20].

The dishonest protocol in [20] also consists of epochs with the same Propose, Vote, and Commit
phases, and the purpose of each phase is similar to the honest majority protocol. However, in each of
these phases, rather than simply sending a message to all users, each user uses the TrustCast protocol to
send their messages, meaning that each phase requires d rounds. They then use the verification functions
Vfprop, Vfvote, and Vfcomm in order to check that the messages they receive are valid in the propose, vote,
and commit phase, respectively. Essentially, using these verification functions, the protocol guarantees
the following for any honest node u in epoch e:

• At the end of propose, either the leader Le is removed from u’s trust graph, or u has received a
valid proposal from the leader.

• At the end of vote, either the leader Le is removed from u’s trust graph, or u has received votes
on the leader’s proposal from every user in u’s trust graph.

• At the end of commit, either the leader Le is removed from u’s trust graph, or u has received a
valid commit evidence on the leader’s proposal from every user in u’s trust graph.

6.2 Intuition for dishonest majority protocol

We improve the round complexity of Wan et al.’s protocol [20] by reducing the number of rounds for
the propose and vote phase from d to d − 1, where d denotes the diameter of the trust graph, and is
defined to be d = dn/he + bn/hc − 1 as shown in [20]. Thus, each epoch will require 3d − 2 rounds,
an improvement by two rounds from the original 3d rounds. We do this by only running the TrustCast
protocol for d− 1 rather than d rounds in the propose and vote phases. This means that when a sender
s trustcasts a messages m, for every round 1 ≤ r ≤ d − 1, every user u checks if they have received s’s
message, and if not, removes their edges with any neighbors that are less than distance r from s in their
trust graphs. Therefore, by the end of this modified TrustCast protocol, any honest node u will either
receive s’s message, remove s from their trust graphs, or there will be a distance d between u and s in
u’s trust graph. In other words, the difference compared to Wan et al.’s protocol [20] is that a honest
node u will not receive messages from s in the propose and vote phases, even if s remains in u’s trust
graph, if s is distance d away from u in u’s trust graph.

To provide intuition for why the protocol still works despite users not receiving some messages as a
result of this lower round complexity, we show that it is not necessary to exchange messages with all
users, but rather it is enough if at least one honest user receives valid messages. Specifically, in the
Propose phase, rather than the leader sending their proposal to every user, it is enough to just make
sure that at least one honest user receives the proposal. In the Vote phase, rather than receiving votes
from everyone in their trust graphs, we ensure that every honest user will receive a vote from at least one
honest user who also received the leader’s proposal. In Appendix A.2, we prove that these conditions
are guaranteed to be met even with the reduced round complexity, and that as long as this is true, the
protocol will still satisfy the necessary consistency, validity, and liveness properties. To account for the
fact that users will no longer receive messages from users that are a distance d away from them in their
trust graphs during the propose and vote phases, we modify various aspects of the protocol such as the
requirements for the commit evidence and verification functions. Again, in Appendix A.2, we explain
these changes in more detail.

Note that we are focusing on the static adversary case for the dishonest majority protocol, but it has
been shown in [20] that the protocol can be modified to be resilient under a weakly adaptive adversary,
which means that if the adversary corrupts a user in round r, they can inject messages into round r, but
they cannot erase messages already sent in round r. This type of adversary has been defined previously
in [14].

7 Conclusion

The honest majority protocol described in this paper achieves Byzantine Broadcast in expected 8 rounds.
This is an improvement from previous honest majority results. Although our protocol can also be con-
verted to Byzantine Agreement, doing so required adding 2 rounds for total 10 rounds, which is equivalent
to existing results. This paper also explained a protocol under a strongly rushing adaptive adversary
that achieves Byzantine Broadcast in expected 10 rounds, which is an improvement over previous results.
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Finally, we showed a method to reduce the round complexity of Byzantine Broadcast under the dishonest
majority setting by 2 rounds per epoch. Future work includes improving the communication complexity
and exploring the optimal round complexity for Byzantine Broadcast.

A Dishonest Majority Protocol

A.1 Protocol

Throughout the protocol, we use the notation TrustCastVf,s to mean that a user s is sending a message
using the TrustCast protocol, and all users u should use the verification function Vf to verify the messages
they receive during this protocol. Originally, the TrustCast protocol runs for d rounds, which is the
diameter of the trust graphs. However, for our protocol, in the propose and vote phases, when we call
the TrustCast protocol we are only running it for d−1 rounds. The final protocol for dishonest majority
Byzantine Broadcast is described below:

Byzantine Broadcast under dishonest majority

For each epoch e = 1, 2, . . .:

1. Propose (d− 1 rounds)

• Send: The leader of this epoch Le calls the TrustCastVfprop,Le protocol for d − 1 rounds to
TrustCast a proposal of the form (prop, e, (b, E)), where

– if e = 1, then the proposed bit b is the leader’s input bit and the commit evidence E is ⊥.

– if Le has not received any commit evidence, then b is a random bit and E is ⊥.

– if Le has seen a non-⊥ commit evidence, then E is the freshest commit evidence Le has
seen and b is the bit that the commit evidence was vouching for.

• Receive: For every user u ∈ [n], if u receives Le’s proposal during the TrustCastVfprop,Le

protocol, u verifies the leader’s proposal using the Vfprop function, which is defined as follows:
u.Vfprop(prop, e, (b, E)) = true in round r iff the following holds:

(a) either E = ⊥, or E is a valid commit evidence supporting the proposed bit b; and

(b) either e = 1, or E is at least as fresh as any commit evidence TrustCasted by u in all
previous epochs — note that we treat ⊥ as a valid commit evidence for epoch 0.

2. Vote (d− 1 rounds): For every user u ∈ [n],

• Send: call TrustCastVfvote,u for d − 1 rounds to TrustCast a vote of the form (vote, e, b′),
where

– if u received Le’s proposal, then b′ := b where b ∈ {0, 1} is Le’s proposed bit

– if u did not receive Le’s proposal, then b′ := ⊥
• Receive: For every user v ∈ [n], if v receives u’s vote during the TrustCastVfvote,u protocol, v

verifies u’s vote using the Vfvote function, which is defined as follows: v.Vfvote(vote, e, b′) = true
in round r iff either

(a) Le is removed from Gr
v,

(b) Le is distance d away from u in Gr
v,

(c) or b′ matches Le’s proposal (in v’s view).

3. Commit (d rounds): For every user u ∈ [n],

• Send: call TrustCastVfcomm,u to TrustCast a commit message of the form (comm, e, E), where

– if all users v such that d(v, Le, Gu) < d and d(v, u,Gu) < d, voted for the same bit
b ∈ {0, 1}, then E contains a graph G, which represents u’s trust graph at the end of the
Vote phase, and a signed vote message of the form (vote, e, ) from all users v such that
d(v, Le, G) < d and d(v, u,G) < d. Furthermore, u outputs the bit b.

– Else, E := ⊥.
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• Receive: For every user v ∈ [n], if v receives a commit message from u’s during the
TrustCastVfcomm,u protocol, v verifies u’s commit message using the Vfcomm function, which
is defined as follows:
v.Vfcomm(comm, e, E) = true in round r if either Le is removed from Gr

v, or E is a valid commit
evidence for (e, b), where b is Le’s proposed bit.

Terminate: If a user u receives commit evidences for (e, b) from everyone still in their trust graphs,
then relay the commit messages and terminate.

A.2 Reducing Round Numbers from d to d− 1

A.2.1 Propose Phase

In the following sections, we explain in more detail the aspects of the protocol that are changed in
comparison to the protocol in [20] in order to accommodate for the reduced round complexity, and how
our protocol still works with these changes.

First, if we reduce the round number of the Propose phase from d to d − 1, then for any user u
such that the leader is removed from u’s trust graph or that u is distance d away from the leader in u’s
trust graph by the end of the Propose phase, u will not receive the leader’s proposal. As a result, u
will not be able to TrustCast the leader’s proposal in the Vote phase. However, u may still be honest
and their vote should still be verified. Therefore, we need to modify the verification function Vfvote so
that votes from these users will be valid. The original Vfvote function is defined such that in round r,
v.Vfvote(vote, e, b′) = true iff (1) either the leader is removed from Gr

v, or (2) b′ agrees with the leader’s
proposed bit (in v’s view).

We modify Vfvote so that a user v verifies user u’s vote iff either (1) u has not received from the
leader, or (2) u’s vote agrees with the leader’s proposed bit. A user u would not receive from the leader
if, at the end of the Propose phase, u and Le were more than distance d − 1 away from each other in
u’s trust graph (note that if Le has been removed from u’s trust graph, we can essentially consider Le

to be more than distance d away from u). Another user v can verify if u did not receive a proposal from
the leader by checking if u and Le are more than distance d− 1 away from each other in v’s trust graph
at the time that v receives u’s vote, i.e. d(u, Le, Gv) > d − 1. This works because of the monotonicity
invariant from [20], which guarantees that an honest user’s trust graph in round t is a subset of any
honest user’s trust graph in any round r < t.

This means that Gv at the time that v receives u’s vote is a subgraph of Gu at the end of Propose, so
d(u, Le, Gv) ≥ d(u, Le, Gu) > d−1. Specifically, if v receives (vote, e, b′) from u, then the Vfvote function
is defined below. Again, note that when we say d(u, Le, Gv) > d, this is equivalent to saying that Le is
removed from Gv because the maximum diameter of the trust graph is maintained to be d.

v.Vfvote(vote, e, b′) =


true if d(u, Le, Gv) ≥ d
true if b′ agrees with Le’s proposed bit

false otherwise

We have now modified the protocol so that votes from users that may still be honest but did not
receive from the leader will still be verified. However, we must also ensure that if the leader remains in
an honest user u’s trust graph, u should receive a valid vote on the leader’s proposal from at least one
honest user, meaning the leader’s proposal reaches at least one honest user in d − 1 rounds. We show
this using the fact that in the trustcast protocol, if a user u has not received a message from a sender
s in round r, then s must be at distance at least r + 1 from u or removed from u’s trust graph. By
setting the round number r to d − 1, we show that if in round d − 1, the leader remains in a user u’s
trust graph, then any v such that d(v, Le, Gu) < d will receive the leader’s proposal. Furthermore, it has
been shown in [20] that |{v | d(v, Le, Gu) = d}| ≥ n− f is impossible due to the properties of the trust
graph. Therefore, there is at least one honest user v where d(v, Le, Gu) < d and will receive the leader’s
proposal, so u will receive the vote of at least one honest user v.

We also must change the requirements for a commit evidence from a user u to contain a graph G
which represents u’s trust graph at the end of the Vote phase, and a set of votes from all users v such
that d(v, Le, G) < d. The Vfcomm function then checks that this commit evidence is valid iff it contains
votes from every v such that d(v, Le, G) < d. If a user did not commit, the Vfcomm function checks that
the leader is removed from their trust graphs.
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A.2.2 Vote Phase

If we additionally reduce the number of rounds in the Vote phase from d to d−1, as explained previously,
using the TrustCast protocol, users will no longer receive votes from other users that are distance d away
from them in their trust graphs. Instead, users will receive votes from all users that are within a distance
of d− 1 away from them. In other words, for any user u, if the leader remains in u’s trust graph, then u
must receive a vote on the leader’s proposal from any v such that d(v, Le, Gu) < d, meaning v received
the leader’s proposal, and d(u, v,Gu) < d, meaning u receives v’s vote. Therefore, we again modify the
commit evidence E from a user u to contain a graph G which represents u’s trust graph at the end of
the Vote phase, and a set of votes from all users v such that d(v, Le, G) < d and d(v, u,G) < d.

The Vfcomm function remains the same: if the commit condition, which is that the leader remains in
their trust graphs, is met, then it verifies the commit evidence is valid. If a user did not commit, it verifies
that the leader is removed from their trust graphs. However, the difference is that the requirements for a
commit evidence to be valid are modified. A commit evidence from u is considered valid by another user
w iff it contains votes on the same message from every user v such that d(v, Le, G) < d and d(v, u,G) < d.
Also, note that by the monotonicity invariant from [20] defined earlier, w’s trust graph should be a subset
of G.

Next we show that our protocol will still work with d − 1 rounds for the Vote phase, because if the
leader remains in a user’s trust graph, then they will receive votes on the leader’s message from at least
one honest user. In the following lemma, we prove that any honest user u will receive a vote on the
leader’s proposal from at least one honest user, meaning there is at least one honest user that is less than
distance d away from both the leader and u.

Lemma A.1. For any honest user u, if the leader remains in u’s trust graph, then there is at least one
honest user v that satisfies d(v, L,Gu) < d and d(u, v,Gu) < d.

Proof. We can prove this by contradiction. Suppose that for all honest users, either d(v, L,Gu) = d or
d(v, u,Gu) = d. Denote SL to be the set of honest users such that d(v, L,Gu) = d, and Su to be the set
of honest users such that d(v, u,Gu) = d yet d(v, L,Gu) 6= d.

We are assuming that all n − f honest users must be contained in either SL or Su. However, |SL|
and |Su| alone must each be less than n − f by the properties of the trust graph described in [20], so
neither set can be empty.

Since SL and Su contain only honest users, they must be directly connected. Also, because any user
in SL is distance d away from L, any user in Su can be distance d−1, d, or d+ 1 away from L. However,
distance d is impossible due to the definition of Su, and d+ 1 is impossible due to properties of the trust
graphs, as the trust graph can have maximum diameter of d. Therefore, any user in Su must be distance
d− 1 from L.

Suppose the shortest path between L and a node in Su is L0−L1−L2−· · ·−Ld−1 where L0 = L and
Ld−1 ∈ Su. Since all nodes in SL are connected to Ld−1, for any node w ∈ SL, L0−L1−L2−· · ·−Ld−1−w
must be a path in u’s trust graph. Further, by definition of SL, this should be one of the shortest paths
between L and w. Therefore, w.l.o.g., we can assume that the shortest path between L and any node in
SL is L0 − L1 − L2 − · · · − Ld where L0 = L, Ld−1 ∈ Su and Ld ∈ SL.

Denote S(L, i) to be the set of all intersections between N(Li) and N(Li+1), where N(v) is the set
of v’s neighbors. By the properties of the trust graph, we know that S(L, i) ≥ n − f and for any i,
S(L, i) and S(L, i+ 2) must be disjoint. Then, suppose SET = S(L, 0)∪S(L, 1)∪ · · ·∪S(L, d−1). Since
Ld−1 ∈ S(L, d− 2), the distance between Ld−1 and any node in SET \ L is at most d− 2.

Since d(u, Ld−1, Gu) = d, u is not in SET, so now we consider the shortest path between u and
Ld−1, u0 − u1 − · · · − ud−1 −Ld−1. We similarly define S(u, i) as the set of intersections between N(ui)
and N(ui+1). Since d(u1, Ld−1) = d − 1, u1 is not in SET either, meaning S(u, 0) is not in SET. Since
|S(u, 0)| = n − f , if |SET| > f then we reach a contradiction as there would have to be more than n
nodes.

We know that |SET| > f using a similar method to the one used in Claim 3.1 of [20]. We use the
symbol h = n− f to denote the number of honest users.

• If n is not divisible by h, then suppose n = k · h+ l where k is the quotient of n divided by h and
l is the remainder. By definition, d = dn/he+ bn/hc − 1 = 2k.

• If n is perfectly divisible by h, i.e., n = k · h, then d = 2k − 1.
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In both cases,
|SET| = |S(L, 0) ∪ S(L, 1) ∪ · · · ∪ S(L, d− 1)|

≥ |S(L, 0) ∪ S(L, 2) ∪ · · · ∪ S(L, 2k − 2)|
= |S(L, 0)|+ |S(L, 2)|+ · · ·+ |S(L, 2k − 2)|
≥ h · k > n− h.

We have now shown that if there is no honest user v such that d(v, L,Gu) < d and d(u, v,Gu) < d, then
we reach a contradiction as there would have to be more than n users.

Through Lemma A.1, we have proved that we can reduce the round number of both the Propose and
Vote phases each from d to d− 1, and, if the leader remains in their trust graphs, every honest user will
still receive a vote on the leader’s proposal from at least one honest user. Overall, the improved round
complexity is now 3d− 2 rounds per epoch, compared to 3d rounds per epoch in [20], where the protocol
requires expected n/(n− f) epochs to terminate.

A.3 Monotonicity and Validity at Origin

In this section, we prove that our modified verification functions continue to satisfy the monotonicity and
validity at origin conditions described in [20]. These conditions are necessary to ensure that all honest
nodes remain direct neighbors in each others’ trust graphs throughout the protocol.

• Monotonicity Condition from [20]: Suppose r < t and u, v are honest users. If u.Vf(m) = true in
round r, then it must be that v.Vf(m) = true in round t.

• Validity at Origin from [20]: If the leader s is honest, it must be that s.Vf(m) = true in round 0.

Our proofs that the modified Vf functions will still satisfy these conditions are similar to the proofs
in [20], with a few changes.

A.3.1 Monotonicity Condition of Verification Functions

Lemma A.2. Vfvote satisfies the monotonicity condition.

Proof. Suppose u, v are honest nodes, and r < t. If (vote, e, b′) passes Vfvote w.r.t. node u in round r,
then in round r, either Le /∈ Gr

u, d(u, Le, G
r
u) = d, or d(u, Le, G

r
u) < d and u heard Le propose the same

bit b ∈ {0, 1}.
In the first case, we know that in round t, Le /∈ Gt

v by the monotonicity invariant and so in round t,
(vote, e, b′) must pass the verification function Vfvote w.r.t. the node v.

If the second case happens, then in round t, d(u, Le, G
r
v) = d, or d(u, Le, G

r
v) > d and Le is removed

from v’s trust graph, by the trust graph monotonicity lemma, and thus in round t, (vote, e, b′) must pass
the verification function Vfvote w.r.t. the node v.

In the third case, if in round t, Le /∈ Gt
v then Vfvote would pass w.r.t. v in round t. Next, we discuss

the case when Le ∈ Gt
v. In this case, v must have heard Le TrustCast the same proposal since otherwise

u would have sent to v the leader’s equivocating proposal, and v would have removed Le from its trust
graph. Therefore, in round t, (vote, e, b′) must pass the verification function Vfvote w.r.t. the node v.

The proofs for Vfprop and Vfcomm are still the same as in [20].

A.3.2 Validity at Origin

The validity at origin proofs for Vfprop and Vfvote remain the same as in the original paper [20]. Therefore,
we focus on validity at origin for Vfcomm.

Fact A.3. Suppose that in some epoch e by the end of the Vote phase, Le remains in an honest node
u’s trust graph. Then, for any node v that satisfies d(v, Le, Gu) < d and d(v, u,Gu) < d by the end of
the Vote phase, v must have TrustCasted to u a vote message of the form (vote, e, b) where b denotes the
bit proposed by Le.
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Proof. By Lemma A.1, we know that there is at least one honest user v that satisfies d(v, Le, Gu) < d
and d(v, u,Gu) < d. Furthermore, by the property of the TrustCast protocol, for any v that satisfies
d(v, Le, Gu) < d and d(v, u,Gu) < d by the end of the Vote phase, v must have TrustCasted to u a vote
(vote, e, b). The fact follows because u would check Vfvote on every vote it receives, and Vfvote makes
sure that the vote is only accepted if the vote agrees with all other votes it receives.

The validity at origin proof for the Vfcomm function then follows directly.

A.4 Proof of dishonest majority protocol’s correctness

In order to prove the correctness of our dishonest majority protocol, it must satisfy the same consistency,
validity, and liveness conditions that we proved in the honest majority protocol. We use similar proofs
as the ones for the honest majority protocol.

Lemma A.4. If two honest users u and v see commit evidences for b∗ and b, respectively, in epoch e, it
must be that b = b∗.

Proof. By Lemma A.1, if the leader remains in their trust graphs, any honest user u will receive a vote on
the leader’s proposal from at least one other honest user, so u’s commit evidence for (e, b∗) must contain
a vote from at least one honest user w. As shown in [20], all honest users remain direct neighbors with
each other in their trust graphs, and we showed in section A.3 that this holds true even with our modified
Vf functions. Since v and w are both honest, they would be directly connected and v would have also
received w’s vote on b∗ in epoch e. If b 6= b∗, then v would have detected the leader’s equivocation and
would not have outputted b. Therefore, we must have b = b∗.

Lemma A.5. If an honest user u outputs b in epoch e, then no honest user v can output a different bit
b′ 6= b in any future epoch e′ > e.

Proof. After u obtains a commit evidence for (e, b), u will trustcast its commit evidence and all honest
users will receive the commit evidence by the end of epoch e. By Lemma A.4, honest users can not
output different bits in the same epoch, so there can not be a commit evidence for (e, b′). Therefore, at
the start of epoch e+ 1, every honest user’s freshest commit evidence is for b. During epoch e+ 1, every
honest user would reject the leader’s Le+1’s proposal if it is not for the same bit b, because otherwise it
would not be verified by Vfprop. Therefore, no honest user will vote for a different bit b′ 6= b, and so no
honest user will be able to generate a fresher commit evidence for b′ in epoch e + 1. We can then user
induction to show that this will continue to be true in all future epochs e′ > e, and no honest user will
ever see a commit evidence for a message b′ 6= b.

Theorem A.6 (Consistency). If two honest users output b and b′ respectively, it must be that b = b′.

Proof. Suppose honest user u is the first to output a bit and outputs b in epoch e. Due to Lemma A.4,
honest users will not see a commit evidence for (b∗, e) in epoch e for any b∗ 6= b. Furthermore, by Lemma
A.5, no honest user will be able to form a commit evidence for a message b′ 6= b in all future epochs.
Therefore, all honest users can only commit and output on b in future epochs.

Theorem A.7 (Validity and Liveness). If the leader Le in epoch e is honest, then every honest user
will terminate on the leader’s proposed bit in that epoch.

Proof. Since the leader remains in all honest user u’s trust graph, we can use Fact A.3 to show that u will
receive votes on the leader’s proposal from every node v that satisfies d(v, Le, Gu) < d and d(v, u,Gu) < d
by the end of the vote phase, so all honest users u will output the leader’s proposal. In the commit phase,
since we are using the TrustCast protocol for d rounds, we can apply Theorem 4.1 of [20] to show that
u will receive commit evidences on the leader’s proposal from everyone still in their trust graphs by the
end of the commit phase. Therefore, all honest users u will terminate by the end of epoch e.
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