Properties of Elliptic Curves

Anuj Sakarda, Jerry Tan, and Armaan Tipirneni

December 11, 2020

Anuj Sakarda, Jerry Tan, and Armaan Tipirneni Properties of Elliptic Curves

What are Elliptic Curves?

Definition (Elliptic Curve)

An elliptic curve is any curve that is birationally equivalent to a curve with the equation $y^2 = f(x) = x^3 + ax^2 + bx + c$.

• • = • • = •

Weierstrass Normal Form

Theorem

The equation of any cubic curve with a rational point can be written in the form

$$y^2 = 4x^3 - g_2x - g_3.$$

where a rational point is a point with rational coordinates.

4 3 4 3 4

Definition

Given two points P and Q, denote P * Q as the third point of intersection of the line through P and Q and the cubic.

• • = • • = •

Operations on Elliptic Curves

Definition

Define P + Q = O * (P * Q)

What is a Group?

Definition

An abelian group is a set of elements with an operation that satisfying the following 5 axioms

(1) Closure.

(2) Associativity.

(3) Identity.

(4) Invertibility.

(5) Commutativity.

The "+" operation over an elliptic curve satisfies the abelian group axioms.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Visualizing Elliptic Curves

▲御▶ ▲ 陸▶ ▲ 陸▶

Visualizing Elliptic Curves

(*) * 문 * * 문 *

Visualizing Elliptic Curves: Lattice to Curve

Lattices and Curves

There is a bijective correspondence between lattices and complex elliptic curves.

The Weierstrass normal form of E_L (the corresponding elliptic curve) is $y^2 = 4x^3 - g_2(L)x - g_3(L)$ where $g_2(L) = 60 \sum_{L^*} \frac{1}{\omega^4}$ and $g_3(L) = 140 \sum_{L^*} \frac{1}{\omega^6}$ where L^* is L without the element 0.

An inverse map called the *j*-invariant exists

Addition works by modding out by the lattice

E.g.
$$(0.5\omega_1 + 0.5\omega_2)$$

 $+(0.5\omega_1 + 0.75\omega_2) \equiv 0.25\omega_2$

Animation can be found at https://en.wikipedia.org/wiki/Torus#/media/File: Torus_from_rectangle.gif

• • = • • = •

Mordell-Weil

We are now ready to present the main subject of our study of rational points on elliptic curves, the Mordell-Weil Theorem.

Theorem (Mordell-Weil)

If a non-singular rational cubic curve has a rational point, then the group of rational points is finitely generated. In particular, if C is a non-singular cubic curve given by

$$C: y^2 = x^3 + ax^2 + bx,$$

where a, b are integers, then the group of rational points $C(\mathbb{Q})$ is a finitely generated abelian group.

< 回 > < 三 > < 三 >

Definition

We define the height function H for a rational number $x = \frac{a}{b}$ as

$$H(x) = \max\{|a|, |b|\}$$

where *a* and *b* are relatively prime integers. Further, $h(x) = \log H(x)$. The height of a point is the height of its x-coordinate.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof of Mordell-Weil

We will break the proof down into four main lemmas.

Lemma (Lemma 1)

For every real number M, the set

$$\{P \in C(\mathbb{Q}) : h(P) \leq M\}$$

is finite.

Proof Outline

- Height of x-coordinate of P is bounded
- Finite number of choices for numerator and denominator

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lemma (Lemma 2)

Let P_0 be a fixed rational point of C. There is a constant κ_0 that depends on P_0 and on a, b, and c, so that

 $h(P+P_0) \leq 2h(P) + \kappa_0$ for all $P \in C(\mathbb{Q})$

Proof Outline

• Use explicit formula for x-coordinate of $P + P_0$:

$$\xi + x + x_0 = \lambda^2 - a$$
 with $\lambda = \frac{y - y_0}{x - x_0}$

(4 同) 4 ヨ) 4 ヨ)

• Work with height function, equation of curve, and triangle inequality

Lemma (Lemma 3)

There is a constant κ , depending on a, b, and c, so that

$$h(2P) \ge 4h(P) - \kappa$$
 for all $P \in C(\mathbb{Q})$.

Proof Outline

Equivalent to fact about polynomials P and Q: Let
 d = max {deg(P), deg(Q)}. There are constants κ₁ and κ₂,
 so that for all rational m/n that are not roots of Q,

$$dh\left(\frac{m}{n}\right)-\kappa_1\leq h\left(\frac{P(m/n)}{Q(m/n)}\right)\leq dh\left(\frac{m}{n}\right)+\kappa_2.$$

• Work with height function, equation of curve, and triangle inequality

Lemma (Weak Mordell-Weil Theorem)

Denote $\Gamma = C(\mathbb{Q})$.

Let the notation 2Γ denote the subgroup of Γ consisting of points that are twice other points.

Then $(\Gamma : 2\Gamma)$, the index of the subgroup 2Γ in Γ , is finite.

Proof Outline

• Let
$$\overline{C}$$
 be given by $y^2 = x^3 + \overline{a}x^2 + \overline{b}x$ where $\overline{a} = -2a, \overline{b} = a^2 - 4b$

- Consider maps $\phi: C \to \overline{C}$ and $\psi: \overline{C} \to C$
- $\phi \circ \psi$ and $\psi \circ \phi$ are both multiplication by two maps.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Descent Theorem)

Let Γ be an abelian group, and suppose that there is a function $h: \Gamma \longrightarrow [0, \infty)$ with the following properties:

- Sor every real number M, the set {P ∈ Γ : h(P) ≤ M} is finite.
- **②** For every $P_0 \in \Gamma$ there is a constant κ_0 so that

$$h(P+P_0) \leq 2h(P) + \kappa_0$$
 for all $P \in \Gamma$.

One of the second s

$$h(2P) \ge 4h(P) - \kappa$$
 for all $P \in \Gamma$.

イロト イボト イヨト イヨト

The subgroup 2Γ has finite index in Γ.
 Then Γ is finitely generated.

Notation

Let the *n*-torsion

$$C[n] = \{\mathcal{O}, (x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$$

be the points *P* on the curve *C* such that nP = O. Let $\mathbb{Q}(C[n]) = \mathbb{Q}(x_1, y_1, \dots, x_m, y_m)$.

Galois Representation

Theorem

$$C[n] \cong (\mathbb{Z}/n\mathbb{Z}) \oplus (\mathbb{Z}/n\mathbb{Z}).$$

Proof Outline

Each of ω_1 and ω_2 in lattice representation represents one of the groups in the direct sum.

• • = • • = •

Anuj Sakarda, Jerry Tan, and Armaan Tipirneni Properties of Elliptic Curves

Theorem

$$K = \mathbb{Q}(C[n])$$
 is a Galois extension of \mathbb{Q} .

Proof Outline

•
$$\sigma: K \to C$$

• If
$$P_i \in C[n]$$
, $\sigma(P_i) \in C[n]$

•
$$\sigma(K) \subseteq K \implies \sigma(K) = K$$
.

イロト イボト イヨト イヨト

Theorem (Galois Representation Theorem)

Let C be an elliptic curve given by a Weierstrass equation with rational coefficients, and let $n \ge 2$ be an integer. Fix generators P_1 and P_2 for C[n]. Then the map

$$\rho_n : \mathsf{Gal}(\mathbb{Q}(C[n])/\mathbb{Q}) \longrightarrow \mathsf{GL}_2(\mathbb{Z}/n\mathbb{Z}), \rho_n(\sigma) = \begin{pmatrix} \alpha_\sigma & \beta_\sigma \\ \gamma_\sigma & \delta_\sigma \end{pmatrix}$$

where

$$\sigma(P_1) = \alpha_{\sigma} P_1 + \gamma_{\sigma} P_2$$

$$\sigma(P_2) = \beta_{\sigma} P_1 + \delta_{\sigma} P_2$$

伺 ト イヨト イヨト

is an injective group homomorphism.

- Joseph H. Silverman and John T. Tate *Rational Points on Elliptic Curves*. Addison-Wesley, Reading, Massachusetts, 1993.
- [2] AJ Bull: Galois Representations and Elliptic Curves, http://www.math.utah.edu/~moss/AJ_Bull_Galois_ Representations_and_Elliptic_Curves.pdf
- [3] Drew Sutherland: Elliptic Curves Over C, http://math.mit.edu/classes/18.783/2017/ LectureNotes16.pdf
- [4] Images Wikipedia and https://slideplayer.com/slide/12970423/79/images/ 7/Computations+on+Elliptic+Curves.jpg

▲ □ ▶ ▲ □ ▶ ▲ □ ▶