Properties of Elliptic Curves

Anuj Sakarda, Jerry Tan, and Armaan Tipirneni

December 11, 2020

What are Elliptic Curves?

$$
a^{2}+b^{2}=c^{2}
$$

$$
\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1
$$

What are Elliptic Curves?

Definition (Elliptic Curve)

An elliptic curve is any curve that is birationally equivalent to a curve with the equation $y^{2}=f(x)=x^{3}+a x^{2}+b x+c$.

$$
y^{2}=x^{3}-x \quad y^{2}=x^{3}-x+1
$$

Weierstrass Normal Form

Theorem

The equation of any cubic curve with a rational point can be written in the form

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

where a rational point is a point with rational coordinates.

Operations on Elliptic Curves

Definition

Given two points P and Q , denote $P * Q$ as the third point of intersection of the line through P and Q and the cubic.

Operations on Elliptic Curves

Definition

Define $P+Q=O *(P * Q)$

What is a Group?

Definition

An abelian group is a set of elements with an operation that satisfying the following 5 axioms
(1) Closure.
(2) Associativity.
(3) Identity.
(4) Invertibility.
(5) Commutativity.

The "+" operation over an elliptic curve satisfies the abelian group axioms.

Visualizing Elliptic Curves

Visualizing Elliptic Curves

Visualizing Elliptic Curves: Lattice to Curve

Lattices and Curves

There is a bijective correspondence between lattices and complex elliptic curves.

The Weierstrass normal form of E_{L} (the corresponding elliptic curve) is $y^{2}=4 x^{3}-g_{2}(L) x-g_{3}(L)$ where $g_{2}(L)=60 \sum_{L^{*}} \frac{1}{\omega^{4}}$ and $g_{3}(L)=140 \sum_{L^{*}} \frac{1}{\omega^{6}}$ where L^{*} is L without the element 0 .
An inverse map called the j-invariant exists

Addition works by modding out by the lattice

$$
\begin{aligned}
\text { E.g. } & \left(0.5 \omega_{1}+0.5 \omega_{2}\right) \\
& +\left(0.5 \omega_{1}+0.75 \omega_{2}\right) \equiv 0.25 \omega_{2}
\end{aligned}
$$

Visualizing Elliptic Curves: Lattice to Torus

Animation can be found at https://en.wikipedia.org/wiki/Torus\#/media/File:
Torus_from_rectangle.gif

Mordell-Weil

Mordell-Weil

We are now ready to present the main subject of our study of rational points on elliptic curves, the Mordell-Weil Theorem.

Theorem (Mordell-Weil)

If a non-singular rational cubic curve has a rational point, then the group of rational points is finitely generated. In particular, if C is a non-singular cubic curve given by

$$
C: y^{2}=x^{3}+a x^{2}+b x
$$

where a, b are integers, then the group of rational points $C(\mathbb{Q})$ is a finitely generated abelian group.

Mordell-Weil

Definition

We define the height function H for a rational number $x=\frac{a}{b}$ as

$$
H(x)=\max \{|a|,|b|\}
$$

where a and b are relatively prime integers.
Further, $h(x)=\log H(x)$. The height of a point is the height of its x-coordinate.

Proof of Mordell-Weil

We will break the proof down into four main lemmas.

Mordell-Weil

Lemma (Lemma 1)

For every real number M, the set

$$
\{P \in C(\mathbb{Q}): h(P) \leq M\}
$$

is finite.

Proof Outline

- Height of x-coordinate of P is bounded
- Finite number of choices for numerator and denominator

Mordell-Weil

Lemma (Lemma 2)

Let P_{0} be a fixed rational point of C. There is a constant κ_{0} that depends on P_{0} and on a, b, and c, so that

$$
h\left(P+P_{0}\right) \leq 2 h(P)+\kappa_{0} \quad \text { for all } P \in C(\mathbb{Q})
$$

Proof Outline

- Use explicit formula for x-coordinate of $P+P_{0}$:

$$
\xi+x+x_{0}=\lambda^{2}-a \text { with } \lambda=\frac{y-y_{0}}{x-x_{0}}
$$

- Work with height function, equation of curve, and triangle inequality

Mordell-Weil

Lemma (Lemma 3)

There is a constant κ, depending on a, b, and c, so that

$$
h(2 P) \geq 4 h(P)-\kappa \quad \text { for all } P \in C(\mathbb{Q}) .
$$

Proof Outline

- Equivalent to fact about polynomials P and Q : Let $d=\max \{\operatorname{deg}(P), \operatorname{deg}(Q)\}$. There are constants κ_{1} and κ_{2}, so that for all rational m / n that are not roots of Q,

$$
d h\left(\frac{m}{n}\right)-\kappa_{1} \leq h\left(\frac{P(m / n)}{Q(m / n)}\right) \leq d h\left(\frac{m}{n}\right)+\kappa_{2}
$$

- Work with height function, equation of curve, and triangle inequality

Mordell-Weil

Lemma (Weak Mordell-Weil Theorem)

Denote $\Gamma=C(\mathbb{Q})$.
Let the notation 2Γ denote the subgroup of Γ consisting of points that are twice other points.
Then $(\Gamma: 2 \Gamma)$, the index of the subgroup 2Γ in Γ, is finite.

Proof Outline

- Let \bar{C} be given by $y^{2}=x^{3}+\bar{a} x^{2}+\bar{b} x$ where

$$
\bar{a}=-2 a, \bar{b}=a^{2}-4 b
$$

- Consider maps $\phi: C \rightarrow \bar{C}$ and $\psi: \bar{C} \rightarrow C$
- $\phi \circ \psi$ and $\psi \circ \phi$ are both multiplication by two maps.

Mordell-Weil

Theorem (Descent Theorem)

Let Γ be an abelian group, and suppose that there is a function $h: \Gamma \longrightarrow[0, \infty)$ with the following properties:
(1) For every real number M, the set $\{P \in \Gamma: h(P) \leq M\}$ is finite.
(2) For every $P_{0} \in \Gamma$ there is a constant κ_{0} so that

$$
h\left(P+P_{0}\right) \leq 2 h(P)+\kappa_{0} \quad \text { for all } P \in \Gamma
$$

(3) There is a constant κ so that

$$
h(2 P) \geq 4 h(P)-\kappa \quad \text { for all } P \in \Gamma .
$$

(9) The subgroup 2Γ has finite index in Γ.

Then Γ is finitely generated.

Galois Representation

Notation

Let the n-torsion

$$
C[n]=\left\{\mathcal{O},\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}
$$

be the points P on the curve C such that $n P=\mathcal{O}$.
Let $\mathbb{Q}(C[n])=\mathbb{Q}\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right)$.

Galois Representation

Theorem

$$
C[n] \cong(\mathbb{Z} / n \mathbb{Z}) \oplus(\mathbb{Z} / n \mathbb{Z}) .
$$

Proof Outline

Each of ω_{1} and ω_{2} in lattice representation represents one of the groups in the direct sum.

Galois Representation

Theorem

$K=\mathbb{Q}(C[n])$ is a Galois extension of \mathbb{Q}.

Proof Outline

- $\sigma: K \rightarrow C$
- If $P_{i} \in C[n], \sigma\left(P_{i}\right) \in C[n]$
- $\sigma(K) \subseteq K \Longrightarrow \sigma(K)=K$.

Galois Representation

Theorem (Galois Representation Theorem)

Let C be an elliptic curve given by a Weierstrass equation with rational coefficients, and let $n \geq 2$ be an integer. Fix generators P_{1} and P_{2} for $C[n]$. Then the map

$$
\rho_{n}: \operatorname{Gal}(\mathbb{Q}(C[n]) / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z}), \rho_{n}(\sigma)=\left(\begin{array}{cc}
\alpha_{\sigma} & \beta_{\sigma} \\
\gamma_{\sigma} & \delta_{\sigma}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \sigma\left(P_{1}\right)=\alpha_{\sigma} P_{1}+\gamma_{\sigma} P_{2} \\
& \sigma\left(P_{2}\right)=\beta_{\sigma} P_{1}+\delta_{\sigma} P_{2}
\end{aligned}
$$

is an injective group homomorphism.

References

[1] Joseph H. Silverman and John T. Tate Rational Points on Elliptic Curves. Addison-Wesley, Reading, Massachusetts, 1993.
[2] AJ Bull: Galois Representations and Elliptic Curves, http://www.math.utah.edu/~moss/AJ_Bull_Galois_ Representations_and_Elliptic_Curves.pdf
[3] Drew Sutherland: Elliptic Curves Over \mathbb{C}, http://math.mit.edu/classes/18.783/2017/
LectureNotes16.pdf
[4] Images - Wikipedia and
https://slideplayer.com/slide/12970423/79/images/ 7/Computations+on+Elliptic+Curves.jpg

