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What are Elliptic Curves?
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What are Elliptic Curves?

Definition (Elliptic Curve)

An elliptic curve is any curve that is birationally equivalent to a
curve with the equation y2 = f (x) = x3 + ax2 + bx + c .
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Weierstrass Normal Form

Theorem

The equation of any cubic curve with a rational point can be
written in the form

y2 = 4x3 − g2x − g3.

where a rational point is a point with rational coordinates.
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Operations on Elliptic Curves

Definition

Given two points P and Q, denote P ∗ Q as the third point of
intersection of the line through P and Q and the cubic.
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Operations on Elliptic Curves

Definition

Define P + Q = O ∗ (P ∗ Q)
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What is a Group?

Definition

An abelian group is a set of elements with an operation that
satisfying the following 5 axioms

(1) Closure.

(2) Associativity.

(3) Identity.

(4) Invertibility.

(5) Commutativity.

The ”+” operation over an elliptic curve satisfies the abelian group
axioms.
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Visualizing Elliptic Curves
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Visualizing Elliptic Curves
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Visualizing Elliptic Curves: Lattice to Curve

Lattices and Curves

There is a bijective correspondence between lattices and complex
elliptic curves.

The Weierstrass normal form of EL (the corresponding elliptic
curve) is y2 = 4x3 − g2(L)x − g3(L) where g2(L) = 60

∑
L∗

1
ω4 and

g3(L) = 140
∑
L∗

1
ω6 where L∗ is L without the element 0.

An inverse map called the j-invariant
exists

Addition works by modding out by
the lattice

E.g. (0.5ω1 + 0.5ω2)
+(0.5ω1 + 0.75ω2) ≡ 0.25ω2
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Visualizing Elliptic Curves: Lattice to Torus

Animation can be found at
https://en.wikipedia.org/wiki/Torus#/media/File:

Torus_from_rectangle.gif
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Mordell-Weil

Mordell-Weil

We are now ready to present the main subject of our study of
rational points on elliptic curves, the Mordell-Weil Theorem.

Theorem (Mordell-Weil)

If a non-singular rational cubic curve has a rational point, then the
group of rational points is finitely generated. In particular, if C is a
non-singular cubic curve given by

C : y2 = x3 + ax2 + bx ,

where a, b are integers, then the group of rational points C (Q) is a
finitely generated abelian group.
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Mordell-Weil

Definition

We define the height function H for a rational number x =
a

b
as

H(x) = max{|a|, |b|}

where a and b are relatively prime integers.
Further, h(x) = logH(x). The height of a point is the height of its
x−coordinate.

Proof of Mordell-Weil

We will break the proof down into four main lemmas.
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Mordell-Weil

Lemma (Lemma 1)

For every real number M, the set

{P ∈ C (Q) : h(P) ≤ M}

is finite.

Proof Outline

Height of x-coordinate of P is bounded

Finite number of choices for numerator and denominator
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Mordell-Weil

Lemma (Lemma 2)

Let P0 be a fixed rational point of C . There is a constant κ0 that
depends on P0 and on a, b, and c, so that

h (P + P0) ≤ 2h(P) + κ0 for all P ∈ C (Q)

Proof Outline

Use explicit formula for x-coordinate of P + P0 :

ξ + x + x0 = λ2 − a with λ =
y − y0
x − x0

Work with height function, equation of curve, and triangle
inequality
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Mordell-Weil

Lemma (Lemma 3)

There is a constant κ, depending on a, b, and c , so that

h(2P) ≥ 4h(P)− κ for all P ∈ C (Q).

Proof Outline

Equivalent to fact about polynomials P and Q: Let
d = max {deg(P), deg(Q)}. There are constants κ1 and κ2,
so that for all rational m/n that are not roots of Q,

dh
(m
n

)
− κ1 ≤ h

(
P(m/n)

Q(m/n)

)
≤ dh

(m
n

)
+ κ2.

Work with height function, equation of curve, and triangle
inequality
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Mordell-Weil

Lemma (Weak Mordell-Weil Theorem)

Denote Γ = C (Q).
Let the notation 2Γ denote the subgroup of Γ consisting of points
that are twice other points.
Then (Γ : 2Γ), the index of the subgroup 2Γ in Γ, is finite.

Proof Outline

Let C be given by y2 = x3 + ax2 + bx where
a = −2a, b = a2 − 4b

Consider maps φ : C → C and ψ : C → C

φ ◦ ψ and ψ ◦ φ are both multiplication by two maps.
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Mordell-Weil

Theorem (Descent Theorem)

Let Γ be an abelian group, and suppose that there is a function
h : Γ −→ [0,∞) with the following properties:

1 For every real number M, the set {P ∈ Γ : h(P) ≤ M} is
finite.

2 For every P0 ∈ Γ there is a constant κ0 so that

h (P + P0) ≤ 2h(P) + κ0 for all P ∈ Γ.

3 There is a constant κ so that

h(2P) ≥ 4h(P)− κ for all P ∈ Γ.

4 The subgroup 2Γ has finite index in Γ.

Then Γ is finitely generated.
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Galois Representation

Notation

Let the n-torsion

C [n] = {O, (x1, y1) , (x2, y2) , . . . , (xm, ym)}

be the points P on the curve C such that nP = O.
Let Q (C [n]) = Q (x1, y1, . . . , xm, ym).
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Galois Representation

Theorem

C [n] ∼= (Z/nZ)⊕ (Z/nZ).

Proof Outline

Each of ω1 and ω2 in lattice representation represents one of the
groups in the direct sum.
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Galois Representation

Theorem

K = Q (C [n]) is a Galois extension of Q.

Proof Outline

σ : K → C

If Pi ∈ C [n], σ (Pi ) ∈ C [n]

σ(K ) ⊆ K =⇒ σ(K ) = K .
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Galois Representation

Theorem (Galois Representation Theorem)

Let C be an elliptic curve given by a Weierstrass equation with
rational coefficients, and let n ≥ 2 be an integer. Fix generators P1

and P2 for C [n]. Then the map

ρn : Gal(Q(C [n])/Q) −→ GL2(Z/nZ), ρn(σ) =

(
ασ βσ
γσ δσ

)
where

σ (P1) = ασP1 + γσP2

σ (P2) = βσP1 + δσP2

is an injective group homomorphism.
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