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Results Covered
Have you ever wondered about:

@ Coupon-collecting problem: if there are n types of coupons, and the
probability of acquiring each of the types is the same, then what's the
expected number of coupons that will have been collected before having
collected all n types of coupons?

o Google’s PageRank: how does Google order their search results?

@ Card-shuffling: how many times you need to shuffle a deck of cards before
the deck is sufficiently “random”?

The Coupon Collector's

Problem
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Markov Chain Example: Student on School Night

3/4 12

Oy

Procrastinating

Initial probabilities:

Being
productive

- Procrastinating: 7/8

- Being productive: 1/8
0 0 - Eating: 0

12

Notice: probability of transitioning to a particular activity only depends on current
activity
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Preliminaries
States are the nodes of the Markov Chain.

A state-space Q is a countable set {/,j, k, ...} where each i € Q is a state.

Definition (State-space) J

The initial distribution describes the probabilities of starting the Markov Chain
from a particular state.

Definition (Initial distribution)

An initial distribution over § is a distribution A = (\; : i € Q) such that 0 < \; < 1
and >, A =L

A transition matrix stores the probabilities pj;; of moving from state i to j in a
Markov Chain.

Definition (Transition matrix)
A transition matrix P is P = (p; : i,j € I) with p; > 0 for all i, and Zjel pij = I.J

The distribution after taking a step is AP. To represent a transition after n steps,
the n-step transition matrix is P".
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Definition of Markov Chain

Definition (Markov Chain)

(Xn)n>0 is @ Markov chain Markov(A, P) with initial distribution A and transition
matrix P if for all n > 0 and ig,...,inr1 € Q:

1. ]P(Xo = io) = )\,’0;
2. ]P(XnJrl = in+1 | XO = iOa v 7Xn = ’n) = P(XnJrl = in+1 | Xn = /n) = Pinin1
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When To Stop, When To Catch

We need to know when to catch the mouse!
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Stopping Time

Definition (Stopping Time)

A stopping time is a random variable T : Q — N U {oo} such that the event at
T = n only depends on information already known, which are Xp, X1, Xo,--- , X,,.

To determine whether or not a random variable is a stopping time, we look for a
stopping rule, a mechanism that tells us whether to continue or stop based on the
present and past events (information already known)

Example
1. H;, the time when the mouse hits one of the traps, is a stopping time.
2. T = H; +1, 1 step after the hitting time, is a stopping time.
3. T = H; —1, 1 step before the hitting time, is not a stopping time.

Christina Li, Yuxin Xie, William Yue Markov Chains and Card Shuffling November 29, 2020 7/32



Example: Coupon-Collecting

Example

Assume that there are n types of different coupons in total, and the possibility of
acquiring each one of the types is the same.
@ 7 is the total number of coupons in hand when the collection set includes all
types of coupons for the first time.

@ 7; is the total number of coupons in hand when the collection set includes i
types of coupons for the first time. 7; is the stopping time here
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Why is this a Markov Chain

Each state in the chain is the number of distinct coupon types in hand.

n—1 n—2 n—3 2 1
1 n n n n n
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Example: Coupon-Collecting

Proposition

Assume that each time, a new coupon is chosen randomly and uniformly. Then the

expected value of T is:
1
E(r)=n)_ ;
=1

Proof.

Tp=m1+ (2 —71)+ -+ (Th — Tho1)

The success probability for the random variable 7; — 7;_; (between two stopping

times) is ~=-tL Therefore,
E(T):zn:E(Ti—Ti—l)ann:;. znzn:l, (I=n—i+1)
i=1 i W0 = !

O

v
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Example: Coupon-Collecting

Proposition

For any ¢ > 0,
P(7 > [nlogn+cn]) < e ¢

Proof.

Let P(A;) denote the probability that the /-th type of coupon has not yet occurred
among the [nlog n+ cn]| coupons already collected. Then,

P(r > [nlogn + cn]) = P(UL,A) < > P(A)
i=1

For each coupon among the [nlog n+ cn] coupons, the probability that it is not
the i-th type is 1 — %

n [nlog n+cn] [nlog n+cn]
Z<1_1> :n<1_1> < nel=") = o€
n n

=1

O

4
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Invariant Distribution

Definition (Invariant distribution)

An invariant distribution X is a row vector (\; : i € ) where >~ \j =1 and

AP =

We also call these stationary distributions, as shown by the following theorem.

Theorem

Let (X,)n>0 be Markov(\, P) and suppose that A is invariant for P. Then
(Xm+n)n>0 is also Markov(A, P).
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Example: Google's PageRank

Example

The PageRank algorithm orders webpages according to its relevance. If webpage i
with a relevance of R; links to k webpages, then i contributes % relevance to each
of the k webpages. The relevance of a webpage is the sum of the relevances

attributed to it by the websites that link to it.

®—

fagegaiid

®—

o
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Example: Google's Pagerank

Probabilistic view: rank by the probability that a random surfer on the Internet will
arrive at that page.

Definition (Random Surfer's Movement)

Let n be the number of webpages on the Internet and L(/) be the number of
hyperlinks on webpage /. The transition matrix P describing the movement of the
random surfer is

oy i L(i) > 0and (i.j) € E,
Pi =191 i L(i
£ ifL(i)=0.

After adding some small changes, we know that this scenario is a stationary
distribution, so we solve 7P = 7. If m; > 7}, then webpage i is more relevant than
webpage j and is consequently ranked higher.
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Properties of Markov Chains

Definition (Irreducibility)

A Markov Chain in which any two states can be reached from each other is
irreducible.

Definition (Periodic and Aperiodic State)

State / is periodic if the number of steps required to return to / have a greatest
common divisor, d, larger than 1 (such as 3, 6, 9, ...). Thus, for periodic states,

when d { n, P,g,'n) = 0, and the period is d. In contrast, states are aperiodic if
(nj)

;77 > 0 for all values of j

dny,--- ,ng > 1,k > 2 with no common divisor and p
from 1 — k.
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Ergodic Chain

Definition (Ergodic Chain)

A finite ergodic chain is a Markov chain on a finite state space that is aperiodic and
irreducible.
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Convergence to Equilibrium

Theorem

Assume that P is the transition matrix for an ergodic Markov chain with invariant
distribution 7. For any initial distribution, P(X, = j) — mj as n — oo

What if, there's a pattern in everything!
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Convergence to Equilibrium (cont.)

Proof.

Assume (Xn)n>0 and (Yn)n>o are independent, and the two Markov chains are
Markov(, P) and Markov(w, P). Let T be T =inf {n >1: X, = Y, = b}
Define a new chain, W, = (X, Y») on [ x I.

Pl k)G, = PPk k) = AiTtk  R(ik) = TiTk

Using the aperiodicity of the transition matrix P, we know that when n becomes
sufficiently large, for any state i,j,k,/,

5((,7,)@(‘,',/) = P,S-H)P;((']) >0 P(T<o0)=1

P(Xy=i)=P(Xo=i,n) +P(Xo=in< T)=P(Yo=in>T)+P(Xo=i,n< T)
=1 —P(Yo=in< T)+P(Xo=i,n< T)

Obviously, P(Y, =i,n< T) <P(n< T) and P(n < T) — P(T = oo, which is 0 as
n — oo (because P(T < o0) = 1). Therefore, P(Y, =i,n < T) — 0. Similarly,
P(X, =i,n < T) — 0. Therefore, P(X, = i) — ;. O

4
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* Convergence to Equilibrium (cont.)

When you look back at the conditions...... they make sense!
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Total Variation

Definition (Total Variation Distance)

Assume that there are two distributions, p and v on the event space, w, total
variation distance is defined as follows:

= vl = 5 Y2 ) — ()

x€eQ

Coin P(H) | P(T) | P(L)

Coin A 3 3 0

1 1
4 12

R 2
Coin B 3

The dlfFerence between the two distributions for the three events (H
1
6 o

, T and L) are
and 75 respectively. The total variation is thus 3(1 + § + 55) =
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Mixing Time
Definition (Mixing Time)
Mixing time, tnix, is defined as follows:
tmix(€) = min{t : d(t) < e}

where d(t) = maxxeq ||P*(x) — 7||Tv. Here P*(x) is the distribution at time t
starting from initial state x.
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Shuffling Cards

Two methods of shuffling cards:

@ The top-to-random shuffle: ~ 300 repetitions

@ The classic riffle shuffle: ~ 8 repetitions
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The Top-to-Random Shuffle

Example (The Top-to-Random Shuffle)
Take the top card and insert it randomly into the deck. Repeat. J

We can view this algorithm as a random walk on the group of permutations S,,,
which has an underlying Markov chain.

This is aperiodic, irreducible, and finite, so it's ergodic. Therefore it converges to
the uniform stationary distribution 7.

Christina Li, Yuxin Xie, William Yue Markov Chains and Card Shuffling. November 29, 2020 23/32



Strong Stationary Times

Definition

A strong stationary time T for (X;) is a randomized stopping time such that the
distribution of X, is 7 and is independent of 7:

P{r =1, X =y} = P{r = t}n(y).

In other words, it's a stopping time where you can be certain that you've reached a
stationary distribution.

Example (Top-to-Random Shuffle)

Let Tiop be the randomized stopping time of when the card that was originally at
the bottom of the deck is first inserted randomly into the deck. Then, 7o is a
strong stationary time.
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Bounding Mixing Times

We are interested primarily in

bmix *= tmix (%) = min {t Ld(t) <

where, recall, d(t) = maxyeq ||P*(x) — 7||tv.

3

R

Proposition

If T is a strong stationary time, then the maximal total variation distance to the
stationary distribution w at time t is bounded:

< .
d(t) < T@éPX{T > t}

Intuition: “if it's unlikely that 7 is large, then d(t) should be small.”

Christina Li, Yuxin Xie, William Yue Markov Chains and Card Shuffling. November 29, 2020 25/32



Bounding Mixing Times

Proposition

t _ i <
Teaf>2<||P (x) = 7l|rv=:d(t) < Teang{T > t}.

Proof (which we will glance over).

Fix x € Q. Then,

IPx) —mllv=" > =(y) [W]

P(xy)<r(y)
T -Pe] L[ BdXe=y <t}

= Teaf)l([ (y) ] = {1 ) ]

L, Bdrzdel)

=== s>
as desired. .

V.
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Top-to-Random Shuffle

It suffices for )
< < —.
d(t) < I’;’Ieélé(Px{Ttop >t} < 2

Trop actually behaves the same as coupon collector problem, so recall that
P(Tiop > [nlogn+ cn]) < e™¢,

Therefore, suffices for ¢ = log4. Hence,

tmix < nlog n+ log(4)n.

For n = 52, this gives | 278 shuffles |.

Christina Li, Yuxin Xie, William Yue Markov Chains and Card Shuffling. November 29, 2020

27/32



Riffle Shuffle

Now it's time for the real deal: riffle shuffles.

Example (Riffle and Inverse Riffle Shuffles)

@ Split deck into top M and bottom n — M with binomial(n,1/2) distribution.
At any point in time, drop bottom card of top pile with probability ;ab and of

bottom pile with probability 2.

@ Label all the cards either 0 or 1 randomly. Place all cards labeled 0 at the top
of the deck.

v
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Riffle Shuffle

Example (Riffle and Inverse Riffle Shuffles)

@ Split deck into top M and bottom n — M with binomial(n,1/2) distribution.
At any point in time, drop bottom card of top pile with probability -2 and of
bottom pile with probability 2

atb’
@ Label all the cards either 0 or 1 randomly. Place all cards labeled 0 at the top
of the deck. )
Proposition

The first algorithm generates the distribution @ on S,, namely

(n+1)/2" ifo=id,
Qo)=<1/2" if o has exactly two rising sequences,
0 otherwise.

while the second algorithm generates the inverse distribution Q.
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Riffle Shuffle

Luckily,
1P*(id) — l[vv = [[P*(id) — 7[l7v-

Only consider the second algorithm.

Proposition

For each card in the deck, keep track of all its bits, writing new bits in a string to
the left. Let T be the number of inverse riffle shuffles at the time when all cards
have different binary labels. Then, T is a strong stationary time.

Proof.
Note that cards with different binary labels will be sorted by size as a binary
number. Every binary string is equally likely. O

v
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Riffle Shuffle
Proposition

For the riffle shuffle on an n-card deck, tmix < 2log,(4n/3) for sufficiently large n.

Proof.

P(Tﬁt)zﬁ(l—%),

k=0

Let t = 2log,(n/c) for some constant c. Take logs:

IogE(l—_> Zlog(l__k> :_§<%+O<§)>

k=0
. . 23
by the Taylor Series expansion log(l — x) = —x — % — % —---. Now,
c?n(n—1) n? c? 1
< = —-—— — = —— —_ .
logP(T < t) o +O<n4> > —i—(’)(n)

DA
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Riffle Shuffle

Proposition
For the riffle shuffle on an n-card deck, tmix < 2log,(4n/3) for sufficiently large n.

Proof.
cAn(n—1 n? c? 1
|OgP(T§ t):—%—f—(’) <F> = —?4‘0(;) 5
Therefore, ,
- _ ¢ . P(r<t)
Jim logP(7 < t) = —— = Jim ——ont =1,

Now, take ¢ < /2log(4/3) ~ 0.759, so when n — oo we have P(r < t) — 3, so
P(r > t) — %‘. Therefore, for large n, we can just take ¢ = % to get
tmix < 2log,(n/(3/4)), which is the bound in the proposition. O

y

For n = 52, this gives about | 12 shuffles |.
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Explicit Analysis of Riffle Shuffle

To get a precise estimate, we can explicitly compute the total variation distance

||Pt—7T||Tv=%Z|Pt(‘7)_ 22

€S, o€S,

521‘

This is actually a nontrivial computation given the 52! ~ 10% terms. With tricks:

01 e . . .

08

06 .

04

02

1 2 3 a 5 3 7 8 9

We see a sharp drop-off at | 7-8 shuffles |.
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Conclusion
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