

The Group of Rational Points on a Cubic

Sanjana Das Espen Slettnes Sophie Zhu

December 9, 2020

The Group of Rational Points on a Cubic

Sanjana Das, Espen Slettnes, Sophie Zhu

December 9, 2020

э.

Introduction

Definition (Diophantine Equations)

Diophantines are polynomials with rational coefficients where rational solutions in the real projective space are sought.

- Solutions to one-variable Diophantine equations are just the rational roots of a one-variable polynomial.
 - Formulas exist for such equations of degree ≤ 4 .
- Two-variable Diophantines are more complicated:
 - ▶ Those with degree 1 are simply lines, and are thus parameterizable.
 - What about those with degree 2?

3

イロト イヨト イヨト

Introduction (cont.)

Here we go one degree further: given a rational cubic curve in the projective plane of the form

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j = 0$$

with rational coefficients, we explore its

solutions with rational coordinates.

Figure: A line through a point \mathcal{O} re-intersecting a conic at another rational point P.

Transforming a Cubic

Assume that we have a rational non-singular point \mathcal{O} on our curve. Let $X, Y, Z \colon \mathbb{R}^2 \to \mathbb{R}$ be affine transformations such that

- the kernel of X is the tangent to the curve at P (or, if P = O, any rational line not passing through O),
- \bullet the kernel of Y is a line through ${\mathcal O}$ with rational slope, and
- the kernel of Z is tangent $\overline{\mathcal{OP}}$.

Taking the projective transformation

$$T \colon \mathbb{R}^2 \to \mathbb{R}^2, \quad (x,y) \longmapsto \left(\frac{X}{Z}, \frac{Y}{Z}\right)$$
 gives a curve of the form

$$x_1y_1^2 + (Ax_1 + B)y_1 = Cx_1^2 + Dx_1 + E.$$

Figure: Choosing axes to put a cubic into Weierstraß form

イロト イボト イヨト イヨト

ъ

Weierstraß Normal Form

$$x_1y_1^2 + (Ax_1 + B)y_1 = Cx_1^2 + Dx_1 + E$$

Multiplying this equation by x_1 gives

$$(x_1y_1)^2 + (Ax_1 + B)x_1y_1 = Cx_1^3 + Dx_1^2 + Ex_1.$$

Setting $x_2 = Cx_1$ and $y = C(x_1y_1 + \frac{1}{2}(Ax_1 + B))$ then turns this equation into the form

 $y_2^2 = a$ monic rational cubic in x_2 .

Definition

Given a cubic polynomial $f(x) = x^3 + ax^2 + bx + c$, the *elliptic curve* with equation $y^2 = f(x)$ is the union of the equation's set of solutions and O, the vertical point at infinity. It is said to be *singular* if f has a double root and *non-singular* otherwise.

-

イロト 不得 ト イヨト イヨト

Weierstraß Normal Form (cont.)

Given $a, b, c \in \mathbb{Q}$, let $X = d^2x$ and $Y = d^3y$. The equation of the curve then becomes

$$Y^2 = X^3 + d^2 a X^2 + d^4 b X + d^6 c.$$

By choosing sufficiently large d, we can assume a, b, and c are integers.

Until further notice, ${\cal C}$ will be an non-singular elliptic curve with equation

$$y^2 = f(x) = x^3 + ax^2 + bx + c$$

for $a, b, c \in \mathbb{Z}$.

Figure: The elliptic curves with equations $y^2 = x^3 - 6x + 9$, $y^2 = x^3 - 7x + 6$, $y^2 = x^3 + x^2 - 5x + 3$.

The Group of Rational Points on a Cubic Sanja

Figure: Intersections of various lines with C.

ъ

The Group of Points on a Cubic

ъ

イロト イボト イヨト イヨト

Formulæ for the Group Addition Law

By writing the line through two points as $y = \lambda x + \nu$, we can get a cubic in x that gives the intersections of a line in a cubic and the elliptic curve and use Vieta's formulæ to find the third root. The results are as follows:

Proposition (Addition Formula) If $x_1 \neq x_2$, the sum of $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ is $P + Q = (x_3, y_3)$, where • $\lambda = \frac{y_2 - y_1}{x_2 - x_1},$ • $\nu = \frac{x_2y_1 - x_1y_2}{x_2 - x_1},$ • $x_3 = \lambda^2 - a - x_1 - x_2$, and • $y_3 = \lambda x_3 + \nu$.

Proposition (Duplication Formula) If P = (x, y) where $y \neq 0$, the sum of P with itself is $2P = (x_1, y_1)$, where • $x_1 = \frac{x^4 - 2bx^2 - 8cx + b^2 - 4ac}{4x^3 + 4ax^2 + 4bx + 4c}$, • $\lambda = \frac{f'(x)}{2u}$, and • $y_1 = \lambda(x_1 - x) + y$.

The Group of Rational Points on a Cubic

Points of Finite Order

- The point of order 1 is the identity.
- Points of order 2 are those with a vertical tangent, i.e. those with y coordinate 0.
- Points of order 3 are inflection points, i.e., triple intersections of their tangent.

Theorem (Nagell-Lutz)

- If (x, y) has finite order, $x, y \in \mathbb{Z}$.
- y = 0 or y divides the discriminant of f.

The proof is basically a ν_p bash with the addition and duplication formulæ.

Figure: P has order 2, Q has order 3.

э.

Plit

The Group Structure

We will outline the proof of Mordell's theorem, which states that the group of rational points on a non-singular cubic curve is finitely generated. We do so using the Descent theorem, which gives four conditions that suffice to show that an Abelian group is finitely generated:

Descent Theorem

Let Γ be a commutative group, and let $h\colon \Gamma\to\mathbb{R}_{\geq 0}$ be a function. If

- **(**) for every real number M, the set $\{P \in \Gamma : h(P) \le M\}$ is finite,
- $\begin{tabular}{ll} \hline $\mathbf{0}$ for every $P_0 \in \Gamma$ there is a constant κ_0 so that $h(P+P_0) \leq 2h(P) + \kappa_0$ for all $P \in \Gamma$, and $horizontal theta $horiz$

0 there is a constant κ so that

$$h(2P) \ge 4h(P) - \kappa$$
 for all $P \in \Gamma$.

Then, if the index $(C(\mathbb{Q}) : 2C(\mathbb{Q}))$ is finite, Γ is finitely generated.

Height

Definition

Given a rational number r = p/q for p, q co-prime, we define the *height* of r to be

 $h(r) = \log H(r)$

where

 $H(r) = \max\{|p|, |q|\}.$

We also define the height of a point P = (x, y) to be

h(P) = h(x).

Descent Theorem, Condition 1 \checkmark

For every real number M, the set $\{P\in C: h(P)\leq M\}$ is indeed finite.

The Group of Rational Points on a Cubic

Height of $P + P_0$

Proposition (Descent Theorem, Condition 2)

For a fixed point P_0 , $h(P + P_0) \le 2h(P) + \kappa$ for some constant κ .

By considering primes individually, we get $(x, y) = \left(\frac{m}{e^2}, \frac{n}{e^3}\right)$ for rational points on the curve. So $m \le H(P)$, $e \le H(P)^{1/2}$, and $n \le k \cdot H(P)^{3/2}$. The rest is the addition formula and the triangle inequality – the x-coordinate is

$$\frac{(y-y_0)^2 - (x-x_0)^2(x+x_0+a)}{(x-x_0)^2} = \frac{Ay + Bx^2 + Cx + D}{Ex^2 + Fx + G}$$

Clearing denominators gets this is $\frac{Ane+Bm^2+Cme^2+De^4}{Em^2+Fme^2+Ge^4}$, and using the above bounds on m, e, n and the triangle inequality gets $H(P+P_0) \leq CH(P)^2$ for some constant C.

Height of 2P

Proposition (Descent Theorem, Condition 3)

There is a constant κ such that $h(2P) \ge 4h(P) - \kappa$.

Again, the explicit formulas get the x-coordinate of 2P is

$$\frac{f'(x)^2 - (8x + 4a)f(x)}{4f(x)} = \frac{x^4 - 2bx^2 - 8cx + b^2 - 4ac}{4x^3 + 4ax^2 + 4bx + 4c},$$

but getting a lower bound means we have to bound cancellation. The numerator and denominator cannot have common roots, since if f' and f shared a root, the curve would be singular.

Height of 2P (cont.)

We want $h\left(\frac{f(m/n)}{g(m/n)}\right) \ge d \cdot h\left(\frac{m}{n}\right) - \kappa$, where these have no common roots and maximum degree d. We can bound the gcd of $n^d f(m/n)$ and $n^d g(m/n)$ by a constant R, and some manipulation gets

$$\frac{H\left(\frac{f(m/n)}{g(m/n)}\right)}{H(m/n)^d} \ge \frac{1}{2R} \cdot \frac{|f(m/n)| + |g(m/n)|}{\max\left(|m/n|^d, 1\right)}$$

We want to bound this below by C > 0. But it's a continuous function in $t = \frac{m}{n}$, and it's never 0 and approaches some positive constant as $|t| \to \infty$.

Figure: Bounding the function in t above 0

ъ

Duplication as a composition of homomorphisms

Definition

If C is
$$y^2 = x^3 + ax^2 + bx$$
, then \overline{C} is $y^2 = x^3 - 2ax^2 + (a^2 - 4b)x$.

Note that $\overline{C} = x^3 + 4ax^2 + 16bx$ is isomorphic to C, since (x, y) on $\overline{\overline{C}}$ corresponds to $\left(\frac{x}{4}, \frac{y}{8}\right)$ on C. Also, let T = (0, 0), which is on C.

Definition

Let
$$\phi: C \to \overline{C}$$
 be a function with $\phi(T) = \overline{\mathcal{O}}$, $\phi(\mathcal{O}) = \overline{\mathcal{O}}$, and

$$\phi(x,y) = \left(\frac{y^2}{x^2}, y\left(\frac{x^2-b}{x^2}\right)\right).$$

We can check $\phi(x,y)$ is on \overline{C} by plugging into the equation.

The Group of Rational Points on a Cubic

Duplication as a composition of homomorphisms (cont.)

Proposition

 ϕ is a homomorphism.

We want to show

$$\phi(P_1 + P_2) = \phi(P_1) + \phi(P_2).$$

We immediately get $\phi(-P)=-\phi(P).$ So then it suffices to show

$$P_1 + P_2 + P_3 = \mathcal{O} \implies \phi(P_1) + \phi(P_2) + \phi(P_3) = \overline{\mathcal{O}}.$$

The Group of Rational Points on a Cubic

э.

イロト イヨト イヨト

Duplication as a composition of homomorphisms (cont.)

Since $P_1 + P_2 + P_3 = O$ if and only if P_1, P_2, P_3 are collinear, we can assume they're collinear on a line $y = \lambda x + \nu$ and show their images are collinear on a line $\overline{y} = \overline{\lambda}\overline{x} + \overline{\nu}$.

By some computation, if P_1, P_2, P_3 are the intersections of C with $y = \lambda x + \nu$, then their images are the intersections of \overline{C} with $y = \overline{\lambda}x + \overline{\nu}$ for

$$\overline{\lambda} = \frac{\nu\lambda - b}{\nu} \text{ and } \overline{\nu} = \frac{\nu^2 - a\nu\lambda + b\lambda^2}{\nu}.$$

イロト イヨト イヨト イヨト

э.

Duplication as a composition of homomorphisms (cont.)

Finally, there is a corresponding homomorphism $\overline{\phi}$ from \overline{C} to $\overline{\overline{C}}$, which gives the function $\psi: \overline{C} \to C$ defined as $\psi(\overline{x}, \overline{y}) = \left(\frac{\overline{y}^2}{4\overline{x}^2}, \frac{\overline{y}(\overline{x}^2 - \overline{b})}{8\overline{x}^2}\right)$.

Proposition

 $\psi \circ \phi(P) = 2P.$

This can be shown by straightforward computation. Similarly, we get $\phi \circ \psi(\overline{P}) = 2\overline{P}$. So then we've split the duplication map into two homomorphisms between C and \overline{C} .

Finiteness of the Index $(C(\mathbb{Q}) : 2C(\mathbb{Q}))$

Now we prove the fourth condition in the Descent Theorem, stated as follows:

Theorem

 $(C(\mathbb{Q}): 2C(\mathbb{Q}))$ is finite.

Recall the splitting of the duplication map into the two homomorphisms, shown below.

$$C(\mathbb{Q}) \xrightarrow{\phi} \overline{C}(\mathbb{Q}) \xrightarrow{\psi} C(\mathbb{Q})$$
$$P \xrightarrow{\phi} \overline{P} \xrightarrow{\psi} 2P$$

Using the two homomorphisms, we split the index as

 $(C(\mathbb{Q}):2C(\mathbb{Q}))\leq (C(\mathbb{Q}):\psi(\overline{C}(\mathbb{Q})))(\overline{C}(\mathbb{Q}):\phi(C(\mathbb{Q}))).$

(Proof is simple and just group theory.) It suffices to show $(C(\mathbb{Q}):\psi(\overline{C}(\mathbb{Q}))$ is finite (the other is symmetric). To do this, we find a homomorphism α from $C(\mathbb{Q})$ to another group, where

- 2 $\alpha(C(\mathbb{Q}))$ is finite.

Then the result follows by the First Isomorphism Theorem.

Note that we denote $\overline{a} = -2a$, and $\overline{b} = b^2 - 4a$ from here on.

Finiteness of the Index $(C(\mathbb{Q}) : 2C(\mathbb{Q}))$ (cont.)

Via straightforward computation, we observe the following:

Proposition (Image of $C(\mathbb{Q})$ under ϕ) The image $\phi(C(\mathbb{Q}))$ consists precisely of $\overline{\mathcal{O}}$, $\overline{\mathcal{T}} = (0,0)$ iff $\overline{b} \in \mathbb{Z}^2$, \overline{T} nonzero (x, y) iff $x \in \mathbb{Q}^2$.

Similarly, the image $\psi(\overline{C}(\mathbb{Q}))$ consists precisely of

- **①** *O*,
- **2** T = (0,0) iff $b \in \mathbb{Z}^2$,
- $\textbf{3} \text{ nonzero } (x,y) \text{ iff } x \in \mathbb{Q}^2.$

The Group of Rational Points on a Cubic

Finiteness of the Index $(C(\mathbb{Q}) : 2C(\mathbb{Q}))$ (cont.)

Define the map $\alpha: C(\mathbb{Q}) \to \mathbb{Q}^*/(\mathbb{Q}^*)^2 \text{ by }$

 $\begin{array}{ll} \mathcal{O} \mapsto 1 \mod (\mathbb{Q}^*)^2 \\ T \mapsto b \mod (\mathbb{Q}^*)^2 \\ (x,y) \mapsto x \mod (\mathbb{Q}^*)^2 \text{ for nonzero } x \end{array}$

Weak Mordell's Theorem $(C(\mathbb{Q}): 2C(\mathbb{Q}))$ is finite.

Proposition

- α is a (group) homomorphism.
- **2** The kernel of α is $\psi(\overline{C}(\mathbb{Q}))$.
- $\begin{array}{l} \bullet \quad \alpha(C(\mathbb{Q})) \subseteq \{(\pm p_1^{\epsilon_1} p_2^{\epsilon_2} \cdots p_k^{\epsilon_k}) (\mathbb{Q}^*)^2 \mid \\ \epsilon_i = 0, 1 \text{ for all } 1 \leq i \leq k\}, \text{ where } p_i \text{ are } \\ distinct \text{ prime factors of } b. \end{array}$

For (3), we write
$$(x,y) = \left(\frac{m}{e^2}, \frac{n}{e^3}\right), m, n, e \in \mathbb{Z}, e \neq 0.$$

Via the Descent Theorem, $C(\mathbb{Q})$ must be finitely generated, giving

Mordell's Theorem

Let C be a non-singular cubic curve defined by $y^2 = x^3 + ax^2 + bx$ for $a, b \in \mathbb{Z}$. Then the abelian group $C(\mathbb{Q})$ is finitely generated.

The Explicit Group Structure of $C(\mathbb{Q})$

We now have

$$C(\mathbb{Q}) \cong \mathbb{Z}^r \times \mathbb{Z}/p_1^{\upsilon_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_s^{\upsilon_s}\mathbb{Z}.$$

To find a formula for rank r, we apply a slew of computations and group theory to show the following:

Proposition

Let
$$\overline{\alpha}: \overline{C}(\mathbb{Q}) \to \mathbb{Q}^*/(\mathbb{Q}^*)^2$$
 be the analogy of α . Then $2^r = \frac{\#\alpha(C(\mathbb{Q})) \cdot \#\overline{\alpha}(\overline{C}(\mathbb{Q}))}{4}$

We later explicitly compute r and $C(\mathbb{Q})$ for the curve $C: y^2 = x^3 - x$. We prepare the next proposition to compute that $\#\alpha(C(\mathbb{Q})) = \#\overline{\alpha}(\overline{C}(\mathbb{Q})) = 2$, which gives r = 0.

The Explicit Group Structure of $C(\mathbb{Q})$ (cont.)

For any rational point (x, y) on $C : y^2 = x^3 + ax^2 + bx$, we can write $(x, y) = (m/e^2, n/e^3)$ for integers m and n coprime, $e \in \mathbb{Z}_{\neq 0}$. Via substitution, we get

Proposition

The set of all nonzero points $(x,y)\in C(\mathbb{Q})$ consists precisely of all

$$(x,y) = \left(\frac{b_1 M^2}{e^2}, \frac{b_1 M N}{e^3}\right),$$

where b_1, b_2, M, N, e satisfy

$$N^2 = b_1 M^4 + a M^2 e^2 + b_2 e^4$$

and $b_1b_2 = b$. Moreover, we must have $(M, e, N) \in \mathbb{Z}_{\neq 0} \times \mathbb{Z} \times \mathbb{Z}$ and $gcd(M, e) = gcd(e, N) = gcd(N, M) = gcd(b_1, e) = gcd(b_2, M) = 1$.

・ロト ・ 同ト ・ ヨト ・ ヨト

An Explicit Computation of $C(\mathbb{Q})$

We prove that for the curve $C: y^2 = x^3 - x$, whose analogy is $y^2 = x^3 + 4x$,

$$C(\mathbb{Q}) = \{\mathcal{O}, (0,0), (1,0), (-1,0)\} \cong (\mathbb{Z}/2\mathbb{Z})^2.$$

1 Find images
$$\alpha(C(\mathbb{Q}))$$
 and $\overline{\alpha}(\overline{C}(\mathbb{Q}))$ to determine rank.

•
$$b = 1$$
 gives $b_1 = \pm 1$. Hence we seek solutions to

$$N^2 = M^4 - e^4$$

 $N^2 = -M^4 + e^4$,

which easily give $\alpha(C(\mathbb{Q})) = \{\pm 1 \mod (\mathbb{Q}^*)^2\}.$

- 2 Use Nagell-Lutz to determine torsion subgroup.
- Because D = 4, by Nagell-Lutz, \mathcal{O} , $(0,0), (\pm 1,0)$ are the only points of finite order.

 b
 = 4 gives b₁ = ±1, ±2, ±4. Because ±1 ≡ ±4 mod (Q*)², we need only find solutions to the Diophantine equations for b₁ = ±1, ±2:

$$N^{2} = M^{4} + 4e^{4}$$
$$N^{2} = -M^{4} - 4e^{4}$$
$$N^{2} = 2M^{4} + 2e^{4}$$
$$N^{2} = -2M^{4} - 2e^{4}$$

A speedy analysis gives (M, e, N) = (1, 0, 1), (1, 1, 2) so $\#\alpha(C(\mathbb{Q})), \#\overline{\alpha}(\overline{C}(\mathbb{Q})) = 2$. Hence, $\operatorname{rank}(C(\mathbb{Q})) = 0$.

The Group of Rational Points on a Cubic

The Group of Rational Points on a Singular Cubic Curve

Mordell's Theorem has provided us the structure of the group of rational points on a non-singular cubic curve. Naturally, we turn to singular cubic curves as well. We form a group of points lying on a singular curve by excluding the singular point.

Definition

• Let C be a cubic curve. Let $C_{ns} = \{P \in C \mid P \text{ is not singular}\}.$

2
$$C_{ns}(\mathbb{Q}) = \{(x, y) \in C_{ns} \mid (x, y) \in \mathbb{Q}^2\}.$$

Theorem

• Let C be the curve defined by
$$y^2 = x^3 + x^2$$
.
Then $(C_{ns}(\mathbb{Q}), +) \cong (\mathbb{Q}^*, \times)$.

2 Let C be the curve defined by $y^2 = x^3$. Then $(C_{ns}(\mathbb{Q}), +) \cong (\mathbb{Q}, +).$

Figure: The singular elliptic curve with equation $y^2 = x^3$.

Figure: The singular elliptic curve with equation $y^2 = x^3 + x^2$.

◆□▶ ◆母▶ ◆ヨ▶ ▲ヨ▶ ヨ ろの?

The Group of Rational Points on a Cubic

Acknowledgements

We thank

- Our mentor Kaavya Valiveti of MIT for her valuable guidance and feedback.
- Dr. Pavel Etingof, Dr. Slava Gerovitch, Dr. Tanya Khovanova, the MIT Math Department, and the MIT PRIMES program, for providing us with the opportunity to work on this project.
- You for listening.

3