The Group of Rational Points on a Cubic

Sanjana Das Espen Slettnes Sophie Zhu

December 9, 2020

Introduction

Definition (Diophantine Equations)

Diophantines are polynomials with rational coefficients where rational solutions in the real projective space are sought.

- Solutions to one-variable Diophantine equations are just the rational roots of a one-variable polynomial.
- Formulas exist for such equations of degree ≤ 4.
- Two-variable Diophantines are more complicated:
- Those with degree 1 are simply lines, and are thus parameterizable.
- What about those with degree 2 ?

Introduction (cont.)

Given a conic C with degree 2 , and rational $\mathcal{O} \in C$, any rational line through \mathcal{O} reintersects C at a rational point by Vieta's formulæ. We can thus parameterize the rational points on C in terms of the slopes of the lines between them and \mathcal{O}.

Here we go one degree further: given a rational cubic curve in the projective plane of the form
$a x^{3}+b x^{2} y+c x y^{2}+d y^{3}+e x^{2}+f x y+g y^{2}+h x+i y+j=0$ with rational coefficients, we explore its solutions with rational coordinates.

Transforming a Cubic

Illit

TRilll: 5
Assume that we have a rational non-singular point \mathcal{O} on our curve. Let $X, Y, Z: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be affine transformations such that

- the kernel of X is the tangent to the curve at \mathcal{P} (or, if $\mathcal{P}=\mathcal{O}$, any rational line not passing through \mathcal{O}),
- the kernel of Y is a line through \mathcal{O} with rational slope, and
- the kernel of Z is tangent $\overline{\mathcal{O P}}$.

Taking the projective transformation

$$
\begin{aligned}
& T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(x, y) \longmapsto\left(\frac{X}{Z}, \frac{Y}{Z}\right) \\
& \text { gives a curve of the form }
\end{aligned}
$$

$$
x_{1} y_{1}^{2}+\left(A x_{1}+B\right) y_{1}=C x_{1}^{2}+D x_{1}+E \text {. }
$$

Figure: Choosing axes to put a cubic into Weierstraß form

Weierstraß Normal Form

$$
x_{1} y_{1}^{2}+\left(A x_{1}+B\right) y_{1}=C x_{1}^{2}+D x_{1}+E
$$

Multiplying this equation by x_{1} gives

$$
\left(x_{1} y_{1}\right)^{2}+\left(A x_{1}+B\right) x_{1} y_{1}=C x_{1}^{3}+D x_{1}^{2}+E x_{1} .
$$

Setting $x_{2}=C x_{1}$ and $y=C\left(x_{1} y_{1}+\frac{1}{2}\left(A x_{1}+B\right)\right)$ then turns this equation into the form

$$
y_{2}^{2}=\text { a monic rational cubic in } x_{2} .
$$

Definition

Given a cubic polynomial $f(x)=x^{3}+a x^{2}+b x+c$, the elliptic curve with equation $y^{2}=f(x)$ is the union of the equation's set of solutions and \mathcal{O}, the vertical point at infinity. It is said to be singular if f has a double root and non-singular otherwise.

Weierstraß Normal Form (cont.)

Illii

iRilll:
Given $a, b, c \in \mathbb{Q}$, let $X=d^{2} x$ and $Y=d^{3} y$. The equation of the curve then becomes

$$
Y^{2}=X^{3}+d^{2} a X^{2}+d^{4} b X+d^{6} c
$$

By choosing sufficiently large d, we can assume a, b, and c are integers.

Until further notice, C will be an non-singular elliptic curve with equation

$$
y^{2}=f(x)=x^{3}+a x^{2}+b x+c
$$

Figure: The elliptic curves with equations

$$
y^{2}=x^{3}-6 x+9, \quad y^{2}=x^{3}-7 x+6, \quad y^{2}=x^{3}+x^{2}-5 x+3 .
$$

for $a, b, c \in \mathbb{Z}$.

The intersections of a Line and a Cubic

Lines and cubics can intersect at one or three points.

Definition

$P * Q$ is the third intersection of line $\overline{P Q}$ with C.

Figure: Intersections of various lines with C.

The Group of Points on a Cubic

Illii
 irill

Definition

\mathcal{O} is the vertical point at infinity.

Proposition

There is a unique group $(C,+)$ with identity \mathcal{O} where for collinear P, Q, R,

$$
P+Q+R=\mathcal{O}
$$

Figure: Group addition

Figure: Associativity of addition

Formulæ for the Group Addition Law

By writing the line through two points as $y=\lambda x+\nu$, we can get a cubic in x that gives the intersections of a line in a cubic and the elliptic curve and use Vieta's formulæ to find the third root. The results are as follows:

Proposition (Addition Formula)

If $x_{1} \neq x_{2}$, the sum of $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ is $P+Q=\left(x_{3}, y_{3}\right)$, where

- $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$,
- $\nu=\frac{x_{2} y_{1}-x_{1} y_{2}}{x_{2}-x_{1}}$,
- $x_{3}=\lambda^{2}-a-x_{1}-x_{2}$, and
- $y_{3}=\lambda x_{3}+\nu$.

Proposition (Duplication Formula)

If $P=(x, y)$ where $y \neq 0$, the sum of P with itself is $2 P=\left(x_{1}, y_{1}\right)$, where

$$
\begin{aligned}
& x_{1}=\frac{x^{4}-2 b x^{2}-8 c x+b^{2}-4 a c}{4 x^{3}+4 a x^{2}+4 b x+4 c} \\
& \text { - } \lambda=\frac{f^{\prime}(x)}{2 y}, \text { and }
\end{aligned}
$$

- $y_{1}=\lambda\left(x_{1}-x\right)+y$.

Points of Finite Order

- The point of order 1 is the identity.
- Points of order 2 are those with a vertical tangent, i.e. those with y coordinate 0 .
- Points of order 3 are inflection points, i.e., triple intersections of their tangent.

Theorem (Nagell-Lutz)

- If (x, y) has finite order, $x, y \in \mathbb{Z}$.
- $y=0$ or y divides the discriminant of f.

The proof is basically a ν_{p} bash with the addition and duplication formulæ.

Figure: P has order $2, Q$ has order 3 .

The Group Structure

We will outline the proof of Mordell's theorem, which states that the group of rational points on a non-singular cubic curve is finitely generated. We do so using the Descent theorem, which gives four conditions that suffice to show that an Abelian group is finitely generated:

Descent Theorem

Let Γ be a commutative group, and let $h: \Gamma \rightarrow \mathbb{R}_{\geq 0}$ be a function. If
(1) for every real number M, the set $\{P \in \Gamma: h(P) \leq M\}$ is finite,
(2) for every $P_{0} \in \Gamma$ there is a constant κ_{0} so that

$$
h\left(P+P_{0}\right) \leq 2 h(P)+\kappa_{0} \quad \text { for all } P \in \Gamma, \text { and }
$$

(3) there is a constant κ so that

$$
h(2 P) \geq 4 h(P)-\kappa \quad \text { for all } P \in \Gamma .
$$

Then, if the index $(C(\mathbb{Q}): 2 C(\mathbb{Q}))$ is finite, Γ is finitely generated.

Height

Definition

Given a rational number $r=p / q$ for p, q co-prime, we define the height of r to be

$$
h(r)=\log H(r)
$$

where

$$
H(r)=\max \{|p|,|q|\} .
$$

We also define the height of a point $P=(x, y)$ to be

$$
h(P)=h(x) .
$$

Descent Theorem, Condition 1
For every real number M, the set $\{P \in C: h(P) \leq M\}$ is indeed finite.

Height of $P+P_{0}$

Proposition (Descent Theorem, Condition 2)

For a fixed point $P_{0}, h\left(P+P_{0}\right) \leq 2 h(P)+\kappa$ for some constant κ.
By considering primes individually, we get $(x, y)=\left(\frac{m}{e^{2}}, \frac{n}{e^{3}}\right)$ for rational points on the curve. So $m \leq H(P)$, $e \leq H(P)^{1 / 2}$, and $n \leq k \cdot H(P)^{3 / 2}$.
The rest is the addition formula and the triangle inequality - the x-coordinate is

$$
\frac{\left(y-y_{0}\right)^{2}-\left(x-x_{0}\right)^{2}\left(x+x_{0}+a\right)}{\left(x-x_{0}\right)^{2}}=\frac{A y+B x^{2}+C x+D}{E x^{2}+F x+G}
$$

Clearing denominators gets this is $\frac{A n e+B m^{2}+C m e^{2}+D e^{4}}{E m^{2}+F m e^{2}+G e^{4}}$, and using the above bounds on m, e, n and the triangle inequality gets $H\left(P+P_{0}\right) \leq C H(P)^{2}$ for some constant C.

Height of $2 P$

Proposition (Descent Theorem, Condition 3)

There is a constant κ such that $h(2 P) \geq 4 h(P)-\kappa$.
Again, the explicit formulas get the x-coordinate of $2 P$ is

$$
\frac{f^{\prime}(x)^{2}-(8 x+4 a) f(x)}{4 f(x)}=\frac{x^{4}-2 b x^{2}-8 c x+b^{2}-4 a c}{4 x^{3}+4 a x^{2}+4 b x+4 c}
$$

but getting a lower bound means we have to bound cancellation.
The numerator and denominator cannot have common roots, since if f^{\prime} and f shared a root, the curve would be singular.

Height of $2 P$ (cont.)

We want $h\left(\frac{f(m / n)}{g(m / n)}\right) \geq d \cdot h\left(\frac{m}{n}\right)-\kappa$, where these have no common roots and maximum degree d. We can bound the gcd of $n^{d} f(m / n)$ and $n^{d} g(m / n)$ by a constant R, and some manipulation gets

$$
\frac{H\left(\frac{f(m / n)}{g(m / n)}\right)}{H(m / n)^{d}} \geq \frac{1}{2 R} \cdot \frac{|f(m / n)|+|g(m / n)|}{\max \left(|m / n|^{d}, 1\right)}
$$

We want to bound this below by $C>0$. But it's a continuous function in $t=\frac{m}{n}$, and it's never 0 and approaches some positive constant as $|t| \rightarrow \infty$.

Figure: Bounding the function in t above 0

Duplication as a composition of homomorphisms

Definition

If C is $y^{2}=x^{3}+a x^{2}+b x$, then \bar{C} is $y^{2}=x^{3}-2 a x^{2}+\left(a^{2}-4 b\right) x$.
Note that $\overline{\bar{C}}=x^{3}+4 a x^{2}+16 b x$ is isomorphic to C, since (x, y) on $\overline{\bar{C}}$ corresponds to $\left(\frac{x}{4}, \frac{y}{8}\right)$ on C. Also, let $T=(0,0)$, which is on C.

Definition

Let $\phi: C \rightarrow \bar{C}$ be a function with $\phi(T)=\overline{\mathcal{O}}, \phi(\mathcal{O})=\overline{\mathcal{O}}$, and

$$
\phi(x, y)=\left(\frac{y^{2}}{x^{2}}, y\left(\frac{x^{2}-b}{x^{2}}\right)\right) .
$$

We can check $\phi(x, y)$ is on \bar{C} by plugging into the equation.

Proposition

ϕ is a homomorphism.
We want to show

$$
\phi\left(P_{1}+P_{2}\right)=\phi\left(P_{1}\right)+\phi\left(P_{2}\right) .
$$

We immediately get $\phi(-P)=-\phi(P)$. So then it suffices to show

$$
P_{1}+P_{2}+P_{3}=\mathcal{O} \Longrightarrow \phi\left(P_{1}\right)+\phi\left(P_{2}\right)+\phi\left(P_{3}\right)=\overline{\mathcal{O}}
$$

Duplication as a composition of homomorphisms (cont.) ${ }^{10}$

Since $P_{1}+P_{2}+P_{3}=\mathcal{O}$ if and only if P_{1}, P_{2}, P_{3} are collinear, we can assume they're collinear on a line $y=\lambda x+\nu$ and show their images are collinear on a line $\bar{y}=\bar{\lambda} \bar{x}+\bar{\nu}$.
By some computation, if P_{1}, P_{2}, P_{3} are the intersections of C with $y=\lambda x+\nu$, then their images are the intersections of \bar{C} with $y=\bar{\lambda} x+\bar{\nu}$ for

$$
\bar{\lambda}=\frac{\nu \lambda-b}{\nu} \text { and } \bar{\nu}=\frac{\nu^{2}-a \nu \lambda+b \lambda^{2}}{\nu} .
$$

Figure: Three collinear points on C

Figure: Collinear images on \bar{C}

Finally, there is a corresponding homomorphism $\bar{\phi}$ from \bar{C} to $\overline{\bar{C}}$, which gives the function $\psi: \bar{C} \rightarrow C$ defined as $\psi(\bar{x}, \bar{y})=\left(\frac{\bar{y}^{2}}{4 \bar{x}^{2}}, \frac{\bar{y}\left(\bar{x}^{2}-\bar{b}\right)}{8 \bar{x}^{2}}\right)$.

Proposition

$\psi \circ \phi(P)=2 P$.
This can be shown by straightforward computation. Similarly, we get $\phi \circ \psi(\bar{P})=2 \bar{P}$. So then we've split the duplication map into two homomorphisms between C and \bar{C}.

Finiteness of the Index $(C(\mathbb{Q}): 2 C(\mathbb{Q}))$

Now we prove the fourth condition in the Descent Theorem, stated as follows:

Theorem

$(C(\mathbb{Q}): 2 C(\mathbb{Q}))$ is finite.
Recall the splitting of the duplication map into the two homomorphisms, shown below.

$$
\begin{gathered}
C(\mathbb{Q}) \xrightarrow{\phi} \bar{C}(\mathbb{Q}) \xrightarrow{\psi} C(\mathbb{Q}) \\
P \stackrel{\leftrightarrow}{\mapsto} \bar{P} \xrightarrow[\mapsto]{\psi} 2 P
\end{gathered}
$$

Using the two homomorphisms, we split the index as

$$
(C(\mathbb{Q}): 2 C(\mathbb{Q})) \leq(C(\mathbb{Q}): \psi(\bar{C}(\mathbb{Q})))(\bar{C}(\mathbb{Q}): \phi(C(\mathbb{Q}))) .
$$

(Proof is simple and just group theory.) It suffices to show $(C(\mathbb{Q}): \psi(\bar{C}(\mathbb{Q}))$ is finite (the other is symmetric). To do this, we find a homomorphism α from $C(\mathbb{Q})$ to another group, where
(1) $\operatorname{ker}(\alpha)=\psi(\bar{C}(\mathbb{Q}))$,
(2) $\alpha(C(\mathbb{Q}))$ is finite.

Then the result follows by the First Isomorphism Theorem.
Note that we denote $\bar{a}=-2 a$, and $\bar{b}=b^{2}-4 a$ from here on.

Finiteness of the Index $(C(\mathbb{Q}): 2 C(\mathbb{Q}))$ (cont.)

Figure: The elliptic curve C defined by

$$
y^{2}=x^{3}-x
$$

Figure: The elliptic curve \bar{C} defined by $y^{2}=x^{3}+4 x$.

Via straightforward computation, we observe the following:

Proposition (Image of $C(\mathbb{Q})$ under ϕ)

The image $\phi(C(\mathbb{Q}))$ consists precisely of © $\overline{\mathcal{O}}$,
© $\bar{T}=(0,0)$ iff $\bar{b} \in \mathbb{Z}^{2}$,
© nonzero (x, y) iff $x \in \mathbb{Q}^{2}$.
Similarly, the image $\psi(\bar{C}(\mathbb{Q}))$ consists precisely of
(1) \mathcal{O},
(2) $T=(0,0)$ iff $b \in \mathbb{Z}^{2}$,
(3) nonzero (x, y) iff $x \in \mathbb{Q}^{2}$.

Finiteness of the Index $(C(\mathbb{Q}): 2 C(\mathbb{Q}))$ (cont.)

Define the map
$\alpha: C(\mathbb{Q}) \rightarrow \mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$ by

$$
\left.\begin{array}{rl}
\mathcal{O} & \mapsto 1 \\
T & \bmod \left(\mathbb{Q}^{*}\right)^{2} \\
T & \mapsto b \\
\bmod \left(\mathbb{Q}^{*}\right)^{2} \\
(x, y) & \mapsto x
\end{array} \quad \bmod \left(\mathbb{Q}^{*}\right)^{2} \text { for nonzero } x\right)
$$

Weak Mordell's Theorem

$(C(\mathbb{Q}): 2 C(\mathbb{Q}))$ is finite.

Proposition

(1) α is a (group) homomorphism.
(2) The kernel of α is $\psi(\bar{C}(\mathbb{Q}))$.
(3) $\alpha(C(\mathbb{Q})) \subseteq\left\{\left(\pm p_{1}^{\epsilon_{1}} p_{2}^{\epsilon_{2}} \cdots p_{k}^{\epsilon_{k}}\right)\left(\mathbb{Q}^{*}\right)^{2} \mid\right.$
$\epsilon_{i}=0,1$ for all $\left.1 \leq i \leq k\right\}$, where p_{i} are distinct prime factors of b.

For (3), we write (x, y) $=\left(\frac{m}{e^{2}}, \frac{n}{e^{3}}\right), m, n, e \in \mathbb{Z}, e \neq 0$.

Via the Descent Theorem, $C(\mathbb{Q})$ must be finitely generated, giving

Mordell's Theorem

Let C be a non-singular cubic curve defined by $y^{2}=x^{3}+a x^{2}+b x$ for $a, b \in \mathbb{Z}$. Then the abelian group $C(\mathbb{Q})$ is finitely generated.

The Explicit Group Structure of $C(\mathbb{Q})$

We now have

$$
C(\mathbb{Q}) \cong \mathbb{Z}^{r} \times \mathbb{Z} / p_{1}^{v_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p_{s}^{v_{s}} \mathbb{Z}
$$

To find a formula for rank r, we apply a slew of computations and group theory to show the following:

Proposition

Let $\bar{\alpha}: \bar{C}(\mathbb{Q}) \rightarrow \mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$ be the analogy of α. Then $2^{r}=\frac{\# \alpha(C(\mathbb{Q})) \cdot \# \bar{\alpha}(\bar{C}(\mathbb{Q}))}{4}$.
We later explicitly compute r and $C(\mathbb{Q})$ for the curve $C: y^{2}=x^{3}-x$. We prepare the next proposition to compute that $\# \alpha(C(\mathbb{Q}))=\# \bar{\alpha}(\bar{C}(\mathbb{Q}))=2$, which gives $r=0$.

The Explicit Group Structure of $C(\mathbb{Q})$ (cont.)

For any rational point (x, y) on $C: y^{2}=x^{3}+a x^{2}+b x$, we can write $(x, y)=\left(m / e^{2}\right.$, n / e^{3}) for integers m and n coprime, $e \in \mathbb{Z}_{\neq 0}$. Via substitution, we get

Proposition

The set of all nonzero points $(x, y) \in C(\mathbb{Q})$ consists precisely of all

$$
(x, y)=\left(\frac{b_{1} M^{2}}{e^{2}}, \frac{b_{1} M N}{e^{3}}\right)
$$

where b_{1}, b_{2}, M, N, e satisfy

$$
N^{2}=b_{1} M^{4}+a M^{2} e^{2}+b_{2} e^{4}
$$

and $b_{1} b_{2}=b$. Moreover, we must have $(M, e, N) \in \mathbb{Z}_{\neq 0} \times \mathbb{Z} \times \mathbb{Z}$ and $\operatorname{gcd}(M, e)=\operatorname{gcd}(e, N)=\operatorname{gcd}(N, M)=\operatorname{gcd}\left(b_{1}, e\right)=\operatorname{gcd}\left(b_{2}, M\right)=1$.

An Explicit Computation of $C(\mathbb{Q})$

Illiit

Tilill:
We prove that for the curve $C: y^{2}=x^{3}-x$, whose analogy is $y^{2}=x^{3}+4 x$,

$$
C(\mathbb{Q})=\{\mathcal{O},(0,0),(1,0),(-1,0)\} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}
$$

(1) Find images $\alpha(C(\mathbb{Q}))$ and $\bar{\alpha}(\bar{C}(\mathbb{Q}))$ to determine rank.

- $b=1$ gives $b_{1}= \pm 1$. Hence we seek solutions to

$$
\begin{gathered}
N^{2}=M^{4}-e^{4} \\
N^{2}=-M^{4}+e^{4},
\end{gathered}
$$

which easily give $\alpha(C(\mathbb{Q}))=\{ \pm 1$ $\left.\bmod \left(\mathbb{Q}^{*}\right)^{2}\right\}$.
(2) Use Nagell-Lutz to determine torsion subgroup.

- Because $D=4$, by Nagell-Lutz, \mathcal{O}, $(0,0),(\pm 1,0)$ are the only points of finite order.
- $\bar{b}=4$ gives $b_{1}= \pm 1, \pm 2, \pm 4$. Because $\pm 1 \equiv \pm 4 \bmod \left(\mathbb{Q}^{*}\right)^{2}$, we need only find solutions to the Diophantine equations for $b_{1}= \pm 1, \pm 2$:

$$
\begin{gathered}
N^{2}=M^{4}+4 e^{4} \\
N^{2}=-M^{4}-4 e^{4} \\
N^{2}=2 M^{4}+2 e^{4} \\
N^{2}=-2 M^{4}-2 e^{4}
\end{gathered}
$$

A speedy analysis gives $(M, e, N)=(1,0,1)$, $(1,1,2)$ so $\# \alpha(C(\mathbb{Q})), \# \bar{\alpha}(\bar{C}(\mathbb{Q}))=2$.
Hence, $\operatorname{rank}(C(\mathbb{Q}))=0$.

Mordell's Theorem has provided us the structure of the group of rational points on a non-singular cubic curve. Naturally, we turn to singular cubic curves as well. We form a group of points lying on a singular curve by excluding the singular point.

Definition

(1) Let C be a cubic curve. Let $C_{n s}=\{P \in C \mid P$ is not singular $\}$.
(2) $C_{n s}(\mathbb{Q})=\left\{(x, y) \in C_{n s} \mid(x, y) \in \mathbb{Q}^{2}\right\}$.

Theorem

(1) Let C be the curve defined by $y^{2}=x^{3}+x^{2}$. Then $\left(C_{n s}(\mathbb{Q}),+\right) \cong\left(\mathbb{Q}^{*}, \times\right)$.
(2) Let C be the curve defined by $y^{2}=x^{3}$. Then $\left(C_{n s}(\mathbb{Q}),+\right) \cong(\mathbb{Q},+)$.

Figure: The singular elliptic curve with equation $y^{2}=x^{3}$.

Figure: The singular elliptic curve with equation $y^{2}=x^{3}+x^{2}$.

Acknowledgements

We thank

- Our mentor Kaavya Valiveti of MIT for her valuable guidance and feedback.
- Dr. Pavel Etingof, Dr. Slava Gerovitch, Dr. Tanya Khovanova, the MIT Math Department, and the MIT PRIMES program, for providing us with the opportunity to work on this project.
- You for listening.

