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Linear Representations

Definition

A linear representation of a group G over C is a complex vector
space V together with a group homomorphism ρ : G → GL(V ).

Remark

V is called a representation space and has the structure of a left
CG -module.

Example

Let Cn = {gm | 0 ≤ m < n} be the cyclic group.

ρ : Cn → C×, ρ(gk) = e2πi
k
n , 0 ≤ k < n, for every g ∈ G .
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G-invariant Subspaces

Let ρ : G → GL(V ) be a linear representation over C.

Definition (G -invariant subspace)

A linear subspace W of V is called G -invariant if ρ(g)(W ) ⊆W
for all g ∈ G .

Example

ρ : C2 → GL2(C), γ 7→
(

0 1
1 0

)
.

Eigenvectors to +1 and −1:
v1 = (1, 1), v2 = (−1, 1).

x

y

Cv1Cv2
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Definitions and Maschke’s Theorem

Definition (Subrepresentation)

A subrepresentation of ρ is a G -invariant linear subspace W of V
together with the restricted group homomorphism
ρW : G → GL(W ).

Definition (Irreducible Representation)

A linear representation ρ : G → GL(V ) is called irreducible if the
only G -invariant subspaces of V are {0} and V .

Theorem (Maschke)

Every complex linear representation is the direct sum of
irreducible representations.
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Character Theory

Definition (Character of a representation)

The character of a linear representation ρ : G → GL(V ) is the
complex valued function χ : G → C, given by

χρ(s) := Tr(ρ(s))

for every s ∈ G .

The character is a class function on G .

The space H of class functions on G has a scalar product
given by 〈f , f ′〉 := 1

|G |
∑

g∈G f (g)f ′(g), for f , f ′ ∈ H.
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Character Theory

Theorem (Orthogonality of Characters)

Let χρ and χρ′ be the characters of the irreducible representations
ρ and ρ′, respectively. Then,

〈
χρ, χρ′

〉
= 1 if ρ and ρ′ are

equivalent and
〈
χρ, χρ′

〉
= 0 if they are not.

〈χW , χV 〉 = dim HomG (W ,V ) for a CG -module V and a
simple CG -module W .

Two representations ρ and ρ′ are equivalent iff χρ = χρ′ .

The characters of all irreducible representations of G form an
orthonormal basis of H.

The number of irreducible representations of G is equal to the
number of conjugacy classes of G .
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Induced Representations - Definition

Let θ : H → GL(W ) be a representation. Select a system of
representatives R := {σ ∈ gH : gH ∈ G/H} of G/H and set
Wσ := Cσ ⊗C W . Construct a new representation

τ : G → GL(
⊕
σ∈R

Wσ)

by
τ(t)(σ ⊗ w) = tσ ⊗ w = σ′ ⊗ θ(h)w

where tσ = σ′h with σ′ ∈ R and h ∈ H.

Definition

A representation ρ : G → GL(V ) is induced by θ : H → GL(W ) if
V ∼=

⊕
σ∈R Wσ as representations of G .
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Induced Representations - Alternative Definition

Definition

Let θ : H → GL(W ) be a linear representation which equips W
with the structure of a left CH-module. Set V = CG ⊗CH W .
The representation IndG

H(θ) : G → GL(V ) given by

IndG
H(θ)(g)(σ ⊗ w) = gσ ⊗ w

is called induced by θ.

As
⊕

σ∈R Wσ
∼= CG ⊗CH W , both definitions are equivalent.

If f is a class function on H, the function defined by
IndG

H(f )(u) := 1
|H|
∑

t∈G
t−1ut∈H

f (t−1ut) for every u ∈ G is the

induced class function on G .
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Examples of Induced Representations

Example

The regular representation rG of G is induced by the regular
representation rH of every H ⊂ G : CG ∼= CG ⊗CH CH.

Example

Let G = S3, H = Z2. Let τ be the signum rep. of H, let ε be the
signum rep. of G and let ρ be the standard rep. of G . Then
IndG

H(τ) = ε⊕ ρ.

Example

For representations θi : H → GL(Wi ), i = 1, 2, of H,
IndG

H(θ1 ⊕ θ2) = IndG
H(θ1)⊕ IndG

H(θ2).
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Characters of Induced Representations

Theorem

Let θ : H → GL(W ) be a representation of H ⊂ G and R a system
of representatives of G/H. Then, for each u ∈ G , we have

IndG
H(χθ)(u) =

∑
r∈R

r−1ur∈H

χθ(r−1ur) = χIndGH(θ)
(u).

Example

IndG
H(χrH ) = χrG .

IndG
H(χθ1⊕θ2) = IndG

H(χθ1)⊕ IndG
H(χθ2) = χIndGH(θ1)

⊕ χIndGH(θ2)
.
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Frobenius Reciprocity

Theorem (Frobenius Reciprocity)

Let E and W be a CG -module and a CH-module, respectively.
Then, we have

HomG (IndG
H W ,E ) ∼= HomH(W ,ResGH E ).

Corollary (Frobenius Reciprocity for Characters)

〈IndG
H χρ, χρ′〉G = 〈χρ,ResGH χρ′〉H .

Frobenius Reciprocity states that if ρ and ρ′ are irreducible
representations of H and G , respectively, then the multiplicity of ρ′

in IndG
H(ρ) equals the multiplicity of ρ in ResGH(ρ′).
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Example (2-dimensional irreducible representation of D4)

ρ : rk 7→
(
e2πik/4 0

0 e−2πik/4

)
srk 7→

(
0 e−2πik/4

e2πik/4 0

)
for all k = 0, 1, 2, 3.

The cyclic subgroup C4 ≤ D4 has an irreducible representation
ρ1 : C4 → C× with character χρ1(rk) = e2πik/4 for k = 0, 1, 2, 3.
By Frobenius reciprocity,

〈IndD4
C4

(χρ1), χρ〉 = 〈χρ1 ,ResD4
C4

(χρ)〉

=
1

4
(2 + 1 + eπi + 1 + e2πi + 1 + e3πi ) = 1.

Hence, the irreducible ρ of D4 is induced by the irreducible ρ1 of
C4.
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Counterexample

Question: Is the induced representation of an irreducible
representation always irreducible?

Answer: No!

Example

Let G = S3, H = Z2. Let τ be the signum representation of H, let
ε be the signum representation of G and let ρ be the standard
representation of G . We can compute

χIndGH(τ)
(Id) = 3, χIndGH(τ)

((12)) = −1, χIndGH(τ)
((123)) = 0.

χε(Id) = 1, χε((12)) = −1, χε((123)) = 1.

χρ(Id) = 2, χρ((12)) = 0, χρ((123)) = −1.

χIndGH(τ)
= χε + χρ.
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Mackey’s Irreducibility Criterion

Let ρ : H → GL(W ), H ≤ G , be a representation.
Let Hs := sHs−1 ∩ H for s ∈ G .
Let ρs : Hs → GL(W ) be a representation given by
ρs(x) := ρ(s−1xs) for x ∈ Hs .
Let Ress(ρ) denote the restriction of ρ to Hs .

Theorem (Mackey’s Irreducibility Criterion)

In order that IndG
H(ρ) is an irreducible representation, it is

necessary and sufficient that the following two conditions be
satisfied:
(i) W is a simple left CH-module.
(ii) For every s ∈ G − H, we have

〈
ρs ,Ress(ρ)

〉
= 0.
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