Induced Representations of Finite Groups

Jiaying Cai ${ }^{1}$ Zheheng Xiao ${ }^{1}$
Mentor: Alexander Vitanov
${ }^{1}$ Phillips Exeter Academy

MIT PRIMES Conference: December 2020

Linear Representations

Definition

A linear representation of a group G over \mathbb{C} is a complex vector space V together with a group homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$.

Linear Representations

Definition

A linear representation of a group G over \mathbb{C} is a complex vector space V together with a group homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$.

Remark

V is called a representation space and has the structure of a left $\mathbb{C} G$-module.

Linear Representations

Definition

A linear representation of a group G over \mathbb{C} is a complex vector space V together with a group homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$.

Remark

V is called a representation space and has the structure of a left $\mathbb{C} G$-module.

Example

■ Let $C_{n}=\left\{g^{m} \mid 0 \leq m<n\right\}$ be the cyclic group.

$$
\rho: C_{n} \rightarrow \mathbb{C}^{\times}, \rho\left(g^{\bar{k}}\right)=e^{2 \pi i \frac{k}{n}}, 0 \leq k<n, \text { for every } g \in G .
$$

G-invariant Subspaces

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a linear representation over \mathbb{C}.
Definition (G-invariant subspace)
A linear subspace W of V is called G-invariant if $\rho(g)(W) \subseteq W$ for all $g \in G$.

G-invariant Subspaces

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a linear representation over \mathbb{C}.
Definition (G-invariant subspace)
A linear subspace W of V is called G-invariant if $\rho(g)(W) \subseteq W$ for all $g \in G$.

Example

$\rho: C_{2} \rightarrow \mathrm{GL}_{2}(\mathbb{C}), \gamma \mapsto\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Eigenvectors to +1 and -1 :
$v_{1}=(1,1), v_{2}=(-1,1)$.

Definitions and Maschke's Theorem

Definition (Subrepresentation)

A subrepresentation of ρ is a G-invariant linear subspace W of V together with the restricted group homomorphism $\rho^{W}: G \rightarrow \operatorname{GL}(W)$.

Definitions and Maschke's Theorem

Definition (Subrepresentation)

A subrepresentation of ρ is a G-invariant linear subspace W of V together with the restricted group homomorphism $\rho^{W}: G \rightarrow \mathrm{GL}(W)$.

Definition (Irreducible Representation)

A linear representation $\rho: G \rightarrow \mathrm{GL}(V)$ is called irreducible if the only G-invariant subspaces of V are $\{0\}$ and V.

Definitions and Maschke's Theorem

Definition (Subrepresentation)

A subrepresentation of ρ is a G-invariant linear subspace W of V together with the restricted group homomorphism $\rho^{W}: G \rightarrow \mathrm{GL}(W)$.

Definition (Irreducible Representation)

A linear representation $\rho: G \rightarrow \mathrm{GL}(V)$ is called irreducible if the only G-invariant subspaces of V are $\{0\}$ and V.

Theorem (Maschke)

Every complex linear representation is the direct sum of irreducible representations.

Character Theory

Definition (Character of a representation)

The character of a linear representation $\rho: G \rightarrow G L(V)$ is the complex valued function $\chi: G \rightarrow \mathbb{C}$, given by

$$
\chi_{\rho}(s):=\operatorname{Tr}(\rho(s))
$$

for every $s \in G$.

Character Theory

Definition (Character of a representation)

The character of a linear representation $\rho: G \rightarrow G L(V)$ is the complex valued function $\chi: G \rightarrow \mathbb{C}$, given by

$$
\chi_{\rho}(s):=\operatorname{Tr}(\rho(s))
$$

for every $s \in G$.

- The character is a class function on G.

Character Theory

Definition (Character of a representation)

The character of a linear representation $\rho: G \rightarrow G L(V)$ is the complex valued function $\chi: G \rightarrow \mathbb{C}$, given by

$$
\chi_{\rho}(s):=\operatorname{Tr}(\rho(s))
$$

for every $s \in G$.

- The character is a class function on G.

■ The space \mathbf{H} of class functions on G has a scalar product given by $\left\langle f, f^{\prime}\right\rangle:=\frac{1}{|G|} \sum_{g \in G} f(g) \overline{f^{\prime}(g)}$, for $f, f^{\prime} \in \mathbf{H}$.

Character Theory

Theorem (Orthogonality of Characters)

Let χ_{ρ} and $\chi_{\rho^{\prime}}$ be the characters of the irreducible representations ρ and ρ^{\prime}, respectively. Then, $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle=1$ if ρ and ρ^{\prime} are equivalent and $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle=0$ if they are not.

Character Theory

Theorem (Orthogonality of Characters)

Let χ_{ρ} and $\chi_{\rho^{\prime}}$ be the characters of the irreducible representations ρ and ρ^{\prime}, respectively. Then, $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle=1$ if ρ and ρ^{\prime} are equivalent and $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle=0$ if they are not.

■ $\left\langle\chi_{W}, \chi_{V}\right\rangle=\operatorname{dim} \operatorname{Hom}_{G}(W, V)$ for a $\mathbb{C} G$-module V and a simple $\mathbb{C} G$-module W.

Character Theory

Theorem (Orthogonality of Characters)

Let χ_{ρ} and $\chi_{\rho^{\prime}}$ be the characters of the irreducible representations ρ and ρ^{\prime}, respectively. Then, $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle=1$ if ρ and ρ^{\prime} are equivalent and $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle=0$ if they are not.
$■\left\langle\chi_{W}, \chi_{V}\right\rangle=\operatorname{dim} \operatorname{Hom}_{G}(W, V)$ for a $\mathbb{C} G$-module V and a simple $\mathbb{C} G$-module W.

- Two representations ρ and ρ^{\prime} are equivalent iff $\chi_{\rho}=\chi_{\rho^{\prime}}$.

Character Theory

Theorem (Orthogonality of Characters)

Let χ_{ρ} and $\chi_{\rho^{\prime}}$ be the characters of the irreducible representations ρ and ρ^{\prime}, respectively. Then, $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle=1$ if ρ and ρ^{\prime} are equivalent and $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle=0$ if they are not.

■ $\left\langle\chi_{W}, \chi_{V}\right\rangle=\operatorname{dim} \operatorname{Hom}_{G}(W, V)$ for a $\mathbb{C} G$-module V and a simple $\mathbb{C} G$-module W.

- Two representations ρ and ρ^{\prime} are equivalent iff $\chi_{\rho}=\chi_{\rho^{\prime}}$.
- The characters of all irreducible representations of G form an orthonormal basis of \mathbf{H}.

Character Theory

Theorem (Orthogonality of Characters)

Let χ_{ρ} and $\chi_{\rho^{\prime}}$ be the characters of the irreducible representations ρ and ρ^{\prime}, respectively. Then, $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle=1$ if ρ and ρ^{\prime} are equivalent and $\left\langle\chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle=0$ if they are not.

■ $\left\langle\chi_{W}, \chi_{V}\right\rangle=\operatorname{dim} \operatorname{Hom}_{G}(W, V)$ for a $\mathbb{C} G$-module V and a simple $\mathbb{C} G$-module W.

- Two representations ρ and ρ^{\prime} are equivalent iff $\chi_{\rho}=\chi_{\rho^{\prime}}$.
- The characters of all irreducible representations of G form an orthonormal basis of \mathbf{H}.
- The number of irreducible representations of G is equal to the number of conjugacy classes of G.

Induced Representations - Definition

Let $\theta: H \rightarrow \mathrm{GL}(W)$ be a representation. Select a system of representatives $R:=\{\sigma \in g H: g H \in G / H\}$ of G / H and set $W_{\sigma}:=\mathbb{C} \sigma \otimes_{\mathbb{C}} W$. Construct a new representation

$$
\tau: G \rightarrow \mathrm{GL}\left(\bigoplus_{\sigma \in R} W_{\sigma}\right)
$$

by

$$
\tau(t)(\sigma \otimes w)=t \sigma \otimes w=\sigma^{\prime} \otimes \theta(h) w
$$

where $t \sigma=\sigma^{\prime} h$ with $\sigma^{\prime} \in R$ and $h \in H$.

Induced Representations - Definition

Let $\theta: H \rightarrow \mathrm{GL}(W)$ be a representation. Select a system of representatives $R:=\{\sigma \in g H: g H \in G / H\}$ of G / H and set $W_{\sigma}:=\mathbb{C} \sigma \otimes_{\mathbb{C}} W$. Construct a new representation

$$
\tau: G \rightarrow \mathrm{GL}\left(\bigoplus_{\sigma \in R} W_{\sigma}\right)
$$

by

$$
\tau(t)(\sigma \otimes w)=t \sigma \otimes w=\sigma^{\prime} \otimes \theta(h) w
$$

where $t \sigma=\sigma^{\prime} h$ with $\sigma^{\prime} \in R$ and $h \in H$.

Definition

A representation $\rho: G \rightarrow \mathrm{GL}(V)$ is induced by $\theta: H \rightarrow \mathrm{GL}(W)$ if $V \cong \bigoplus_{\sigma \in R} W_{\sigma}$ as representations of G.

Induced Representations - Alternative Definition

Definition

Let $\theta: H \rightarrow \mathrm{GL}(W)$ be a linear representation which equips W with the structure of a left $\mathbb{C} H$-module. Set $V=\mathbb{C} G \otimes_{\mathbb{C H}} W$. The representation $\operatorname{Ind}_{H}^{G}(\theta): G \rightarrow G L(V)$ given by

$$
\operatorname{lnd}_{H}^{G}(\theta)(g)(\sigma \otimes w)=g \sigma \otimes w
$$

is called induced by θ.

Induced Representations - Alternative Definition

Definition

Let $\theta: H \rightarrow \mathrm{GL}(W)$ be a linear representation which equips W with the structure of a left $\mathbb{C} H$-module. Set $V=\mathbb{C} G \otimes_{\mathbb{C H}} W$. The representation $\operatorname{Ind}_{H}^{G}(\theta): G \rightarrow G L(V)$ given by

$$
\operatorname{lnd}_{H}^{G}(\theta)(g)(\sigma \otimes w)=g \sigma \otimes w
$$

is called induced by θ.

- As $\bigoplus_{\sigma \in R} W_{\sigma} \cong \mathbb{C} G \otimes_{\mathbb{C} H} W$, both definitions are equivalent.

Induced Representations - Alternative Definition

Definition

Let $\theta: H \rightarrow \mathrm{GL}(W)$ be a linear representation which equips W with the structure of a left $\mathbb{C} H$-module. Set $V=\mathbb{C} G \otimes_{\mathbb{C H}} W$. The representation $\operatorname{Ind}_{H}^{G}(\theta): G \rightarrow G L(V)$ given by

$$
\operatorname{lnd}_{H}^{G}(\theta)(g)(\sigma \otimes w)=g \sigma \otimes w
$$

is called induced by θ.

- As $\bigoplus_{\sigma \in R} W_{\sigma} \cong \mathbb{C} G \otimes_{\mathbb{C} H} W$, both definitions are equivalent.
- If f is a class function on H, the function defined by $\operatorname{Ind}_{H}^{G}(f)(u):=\frac{1}{|H|} \sum_{\substack{t \in G \\ t^{-1} u t \in H}} f\left(t^{-1} u t\right)$ for every $u \in G$ is the induced class function on G.

Examples of Induced Representations

Example

The regular representation r_{G} of G is induced by the regular representation r_{H} of every $H \subset G: \mathbb{C} G \cong \mathbb{C} G \otimes_{\mathbb{C} H} \mathbb{C} H$.

Examples of Induced Representations

Example

The regular representation r_{G} of G is induced by the regular representation r_{H} of every $H \subset G: \mathbb{C} G \cong \mathbb{C} G \otimes_{\mathbb{C} H} \mathbb{C} H$.

Example

Let $G=S_{3}, H=\mathbb{Z}_{2}$. Let τ be the signum rep. of H, let ϵ be the signum rep. of G and let ρ be the standard rep. of G. Then $\operatorname{Ind}_{H}^{G}(\tau)=\epsilon \oplus \rho$.

Examples of Induced Representations

Example

The regular representation r_{G} of G is induced by the regular representation r_{H} of every $H \subset G: \mathbb{C} G \cong \mathbb{C} G \otimes_{\mathbb{C} H} \mathbb{C} H$.

Example

Let $G=S_{3}, H=\mathbb{Z}_{2}$. Let τ be the signum rep. of H, let ϵ be the signum rep. of G and let ρ be the standard rep. of G. Then $\operatorname{Ind}_{H}^{G}(\tau)=\epsilon \oplus \rho$.

Example

For representations $\theta_{i}: H \rightarrow \mathrm{GL}\left(W_{i}\right), i=1,2$, of H, $\operatorname{Ind}_{H}^{G}\left(\theta_{1} \oplus \theta_{2}\right)=\operatorname{Ind}_{H}^{G}\left(\theta_{1}\right) \oplus \operatorname{Ind}_{H}^{G}\left(\theta_{2}\right)$.

Characters of Induced Representations

Theorem

Let $\theta: H \rightarrow \mathrm{GL}(W)$ be a representation of $H \subset G$ and R a system of representatives of G / H. Then, for each $u \in G$, we have

$$
\operatorname{Ind}_{H}^{G}\left(\chi_{\theta}\right)(u)=\sum_{\substack{r \in R \\ r^{-1} u r \in H}} \chi_{\theta}\left(r^{-1} u r\right)=\chi_{\operatorname{Ind}_{H}^{G}(\theta)}(u)
$$

Characters of Induced Representations

Theorem

Let $\theta: H \rightarrow \mathrm{GL}(W)$ be a representation of $H \subset G$ and R a system of representatives of G / H. Then, for each $u \in G$, we have

$$
\operatorname{Ind}_{H}^{G}\left(\chi_{\theta}\right)(u)=\sum_{\substack{r \in R \\ r^{-1} u r \in H}} \chi_{\theta}\left(r^{-1} u r\right)=\chi_{\operatorname{Ind}_{H}^{G}(\theta)}(u)
$$

Example

- $\operatorname{Ind}_{H}^{G}\left(\chi_{r_{H}}\right)=\chi_{r_{G}}$.
$■ \operatorname{Ind}_{H}^{G}\left(\chi_{\theta_{1} \oplus \theta_{2}}\right)=\operatorname{Ind}_{H}^{G}\left(\chi_{\theta_{1}}\right) \oplus \operatorname{Ind}_{H}^{G}\left(\chi_{\theta_{2}}\right)=\chi_{\operatorname{Ind}_{H}^{G}\left(\theta_{1}\right)} \oplus \chi_{\operatorname{Ind}_{H}^{G}\left(\theta_{2}\right)}$.

Frobenius Reciprocity

Theorem (Frobenius Reciprocity)

Let E and W be a $\mathbb{C} G$-module and a $\mathbb{C} H$-module, respectively. Then, we have

$$
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} W, E\right) \cong \operatorname{Hom}_{H}\left(W, \operatorname{Res}_{H}^{G} E\right) .
$$

Frobenius Reciprocity

Theorem (Frobenius Reciprocity)

Let E and W be a $\mathbb{C} G$-module and a $\mathbb{C} H$-module, respectively. Then, we have

$$
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} W, E\right) \cong \operatorname{Hom}_{H}\left(W, \operatorname{Res}_{H}^{G} E\right)
$$

Corollary (Frobenius Reciprocity for Characters)
$\left\langle\operatorname{Ind}_{H}^{G} \chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle_{G}=\left\langle\chi_{\rho}, \operatorname{Res}_{H}^{G} \chi_{\rho^{\prime}}\right\rangle_{H}$.

Frobenius Reciprocity

Theorem (Frobenius Reciprocity)

Let E and W be a $\mathbb{C} G$-module and a $\mathbb{C} H$-module, respectively. Then, we have

$$
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} W, E\right) \cong \operatorname{Hom}_{H}\left(W, \operatorname{Res}_{H}^{G} E\right) .
$$

Corollary (Frobenius Reciprocity for Characters)

$\left\langle\operatorname{Ind}_{H}^{G} \chi_{\rho}, \chi_{\rho^{\prime}}\right\rangle_{G}=\left\langle\chi_{\rho}, \operatorname{Res}_{H}^{G} \chi_{\rho^{\prime}}\right\rangle_{H}$.
Frobenius Reciprocity states that if ρ and ρ^{\prime} are irreducible representations of H and G, respectively, then the multiplicity of ρ^{\prime} in $\operatorname{Ind}_{H}^{G}(\rho)$ equals the multiplicity of ρ in $\operatorname{Res}_{H}^{G}\left(\rho^{\prime}\right)$.

Example (2-dimensional irreducible representation of D_{4})

$$
\begin{aligned}
& \rho: r^{k} \mapsto\left(\begin{array}{cc}
e^{2 \pi i k / 4} & 0 \\
0 & e^{-2 \pi i k / 4}
\end{array}\right) \\
& s r^{k} \mapsto\left(\begin{array}{cc}
0 & e^{-2 \pi i k / 4} \\
e^{2 \pi i k / 4} & 0
\end{array}\right) \quad \text { for all } k=0,1,2,3 .
\end{aligned}
$$

The cyclic subgroup $C_{4} \leq D_{4}$ has an irreducible representation $\rho_{1}: C_{4} \rightarrow \mathbb{C}^{\times}$with character $\chi_{\rho_{1}}\left(r^{k}\right)=e^{2 \pi i k / 4}$ for $k=0,1,2,3$. By Frobenius reciprocity,

$$
\begin{aligned}
\left\langle\operatorname{Ind}_{C_{4}}^{D_{4}}\left(\chi_{\rho_{1}}\right), \chi_{\rho}\right\rangle & =\left\langle\chi_{\rho_{1}}, \operatorname{Res}_{C_{4}}^{D_{4}}\left(\chi_{\rho}\right)\right\rangle \\
& =\frac{1}{4}\left(2+1+e^{\pi i}+1+e^{2 \pi i}+1+e^{3 \pi i}\right)=1 .
\end{aligned}
$$

Hence, the irreducible ρ of D_{4} is induced by the irreducible ρ_{1} of C_{4}.

Counterexample

Question: Is the induced representation of an irreducible representation always irreducible?

Counterexample

Question: Is the induced representation of an irreducible representation always irreducible?
Answer: No!

Example

Let $G=S_{3}, H=\mathbb{Z}_{2}$. Let τ be the signum representation of H, let ϵ be the signum representation of G and let ρ be the standard representation of G. We can compute

$$
\begin{aligned}
& \chi_{\operatorname{Ind}_{H}^{G}(\tau)}(\operatorname{Id})=3, \quad \chi_{\operatorname{Ind}_{H}^{G}(\tau)}((12))=-1, \quad \chi_{\operatorname{Ind}_{H}^{G}(\tau)}((123))=0 . \\
& \chi_{\epsilon}(\mathrm{ld})=1, \quad \chi_{\epsilon}((12))=-1, \quad \chi_{\epsilon}((123))=1 . \\
& \chi_{\rho}(\text { Id })=2, \quad \chi_{\rho}((12))=0, \quad \chi_{\rho}((123))=-1 . \\
& \chi_{\operatorname{Ind}_{H}^{G}(\tau)}=\chi_{\epsilon}+\chi_{\rho} .
\end{aligned}
$$

Mackey's Irreducibility Criterion

Let $\rho: H \rightarrow G L(W), H \leq G$, be a representation.
Let $H_{s}:=s H^{-1} \cap H$ for $s \in G$.
Let $\rho^{s}: H_{s} \rightarrow \mathrm{GL}(W)$ be a representation given by
$\rho^{s}(x):=\rho\left(s^{-1} x s\right)$ for $x \in H_{s}$.
Let $\operatorname{Res}_{s}(\rho)$ denote the restriction of ρ to H_{s}.

Mackey's Irreducibility Criterion

Let $\rho: H \rightarrow G L(W), H \leq G$, be a representation.
Let $H_{s}:=s s^{-1} \cap H$ for $s \in G$.
Let $\rho^{s}: H_{s} \rightarrow \mathrm{GL}(W)$ be a representation given by
$\rho^{s}(x):=\rho\left(s^{-1} x s\right)$ for $x \in H_{s}$.
Let $\operatorname{Res}_{s}(\rho)$ denote the restriction of ρ to H_{s}.

Theorem (Mackey's Irreducibility Criterion)

In order that $\operatorname{Ind}_{H}^{G}(\rho)$ is an irreducible representation, it is necessary and sufficient that the following two conditions be satisfied:
(i) W is a simple left $\mathbb{C} H$-module.
(ii) For every $s \in G-H$, we have $\left\langle\rho^{s}\right.$, $\left.\operatorname{Res}_{s}(\rho)\right\rangle=0$.

Acknowledgements

We would like to thank:
■ Our mentor, Dr. Alexander Vitanov of MIT, for his valuable guidance throughout this year.

- MIT PRIMES for this wonderful opportunity.

■ Prof. Pavel Etingof, Dr. Tanya Khovanova, and Dr. Slava Gerovitch for their advice and for organizing the PRIMES program.

- The MIT Math Department.

References

© Serre, Jean-Pierre
Linear Representations of Finite Groups. Graduate Texts in Mathematics, Vol. 42, 1977.

