Induced Representations of Finite Groups

Jiaying Cai¹ Zheheng Xiao¹

Mentor: Alexander Vitanov

¹Phillips Exeter Academy

MIT PRIMES Conference: December 2020

Linear Representations

Definition

A linear representation of a group G over \mathbb{C} is a complex vector space V together with a group homomorphism $\rho : G \to GL(V)$.

Linear Representations

Definition

A linear representation of a group G over \mathbb{C} is a complex vector space V together with a group homomorphism $\rho : G \to GL(V)$.

Remark

V is called a representation space and has the structure of a left $\mathbb{C}G$ -module.

Linear Representations

Definition

A linear representation of a group G over \mathbb{C} is a complex vector space V together with a group homomorphism $\rho : G \to GL(V)$.

Remark

V is called a representation space and has the structure of a left $\mathbb{C}G$ -module.

Example

• Let
$$C_n = \{g^m \mid 0 \le m < n\}$$
 be the cyclic group.
 $\rho: C_n \to \mathbb{C}^{\times}, \ \rho(g^k) = e^{2\pi i \frac{k}{n}}, \ 0 \le k < n$, for every $g \in G$.

G-invariant Subspaces

Let $\rho: G \to GL(V)$ be a linear representation over \mathbb{C} .

Definition (*G*-invariant subspace)

A linear subspace W of V is called G-invariant if $\rho(g)(W) \subseteq W$ for all $g \in G$.

G-invariant Subspaces

Let $\rho: G \to GL(V)$ be a linear representation over \mathbb{C} .

Definition (*G*-invariant subspace)

A linear subspace W of V is called G-invariant if $\rho(g)(W) \subseteq W$ for all $g \in G$.

Example

$$\rho: C_2 \to \mathsf{GL}_2(\mathbb{C}), \gamma \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Eigenvectors to +1 and -1:
 $v_1 = (1, 1), v_2 = (-1, 1).$

Definitions and Maschke's Theorem

Definition (Subrepresentation)

A subrepresentation of ρ is a *G*-invariant linear subspace *W* of *V* together with the restricted group homomorphism $\rho^{W}: G \to GL(W).$

Definitions and Maschke's Theorem

Definition (Subrepresentation)

A subrepresentation of ρ is a *G*-invariant linear subspace *W* of *V* together with the restricted group homomorphism $\rho^{W} : G \to GL(W)$.

Definition (Irreducible Representation)

A linear representation $\rho: G \to GL(V)$ is called **irreducible** if the only *G*-invariant subspaces of *V* are $\{0\}$ and *V*.

Definitions and Maschke's Theorem

Definition (Subrepresentation)

A subrepresentation of ρ is a *G*-invariant linear subspace *W* of *V* together with the restricted group homomorphism $\rho^{W} : G \to GL(W)$.

Definition (Irreducible Representation)

A linear representation $\rho: G \to GL(V)$ is called **irreducible** if the only *G*-invariant subspaces of *V* are $\{0\}$ and *V*.

Theorem (Maschke)

Every complex linear representation is the **direct sum** of *irreducible representations*.

Character Theory

Definition (Character of a representation)

The **character** of a linear representation $\rho : G \to GL(V)$ is the complex valued function $\chi : G \to \mathbb{C}$, given by

$$\chi_{\rho}(s) := \operatorname{Tr}(\rho(s))$$

for every $s \in G$.

Character Theory

Definition (Character of a representation)

The **character** of a linear representation $\rho : G \to GL(V)$ is the complex valued function $\chi : G \to \mathbb{C}$, given by

$$\chi_{\rho}(s) := \operatorname{Tr}(\rho(s))$$

for every $s \in G$.

• The character is a class function on *G*.

Character Theory

Definition (Character of a representation)

The **character** of a linear representation $\rho : G \to GL(V)$ is the complex valued function $\chi : G \to \mathbb{C}$, given by

$$\chi_{\rho}(s) := \operatorname{Tr}(\rho(s))$$

for every $s \in G$.

- The character is a class function on *G*.
- The space **H** of class functions on <u>G</u> has a scalar product given by $\langle f, f' \rangle := \frac{1}{|G|} \sum_{g \in G} f(g) \overline{f'(g)}$, for $f, f' \in \mathbf{H}$.

Character Theory

Theorem (Orthogonality of Characters)

Character Theory

Theorem (Orthogonality of Characters)

Let χ_{ρ} and $\chi_{\rho'}$ be the characters of the irreducible representations ρ and ρ' , respectively. Then, $\langle \chi_{\rho}, \chi_{\rho'} \rangle = 1$ if ρ and ρ' are equivalent and $\langle \chi_{\rho}, \chi_{\rho'} \rangle = 0$ if they are not.

⟨*χ_W*, *χ_V*⟩ = dim Hom_G(*W*, *V*) for a CG-module *V* and a simple CG-module *W*.

Character Theory

Theorem (Orthogonality of Characters)

- ⟨*χ_W*, *χ_V*⟩ = dim Hom_G(*W*, *V*) for a CG-module *V* and a simple CG-module *W*.
- Two representations ρ and ρ' are equivalent iff $\chi_{\rho} = \chi_{\rho'}$.

Character Theory

Theorem (Orthogonality of Characters)

- ⟨*χ_W*, *χ_V*⟩ = dim Hom_G(*W*, *V*) for a CG-module *V* and a simple CG-module *W*.
- Two representations ρ and ρ' are equivalent iff $\chi_{\rho} = \chi_{\rho'}$.
- The characters of all irreducible representations of *G* form an orthonormal basis of **H**.

Character Theory

Theorem (Orthogonality of Characters)

- ⟨*χ_W*, *χ_V*⟩ = dim Hom_G(*W*, *V*) for a CG-module *V* and a simple CG-module *W*.
- Two representations ρ and ρ' are equivalent iff $\chi_{\rho} = \chi_{\rho'}$.
- The characters of all irreducible representations of *G* form an orthonormal basis of **H**.
- The number of irreducible representations of G is equal to the number of conjugacy classes of G.

Induced Representations - Definition

Let $\theta: H \to GL(W)$ be a representation. Select a **system of** representatives $R := \{ \sigma \in gH : gH \in G/H \}$ of G/H and set $W_{\sigma} := \mathbb{C}\sigma \otimes_{\mathbb{C}} W$. Construct a new representation

$$au: \mathsf{G} o \mathsf{GL}(igoplus_{\sigma\in \mathsf{R}} \mathsf{W}_{\sigma})$$

by

$$au(t)(\sigma\otimes w) = t\sigma\otimes w = \sigma'\otimes heta(h)w$$

where $t\sigma = \sigma' h$ with $\sigma' \in R$ and $h \in H$.

Induced Representations - Definition

Let $\theta: H \to GL(W)$ be a representation. Select a **system of** representatives $R := \{ \sigma \in gH : gH \in G/H \}$ of G/H and set $W_{\sigma} := \mathbb{C}\sigma \otimes_{\mathbb{C}} W$. Construct a new representation

$$\tau: \mathcal{G} \to \mathsf{GL}(\bigoplus_{\sigma \in \mathcal{R}} \mathcal{W}_{\sigma})$$

by

$$\tau(t)(\sigma\otimes w)=t\sigma\otimes w=\sigma'\otimes \theta(h)w$$

where $t\sigma = \sigma' h$ with $\sigma' \in R$ and $h \in H$.

Definition

A representation $\rho: G \to GL(V)$ is **induced** by $\theta: H \to GL(W)$ if $V \cong \bigoplus_{\sigma \in R} W_{\sigma}$ as representations of G.

Induced Representations - Alternative Definition

Definition

Let $\theta : H \to GL(W)$ be a linear representation which equips Wwith the structure of a left $\mathbb{C}H$ -module. Set $V = \mathbb{C}G \otimes_{\mathbb{C}H} W$. The representation $Ind_{H}^{G}(\theta) : G \to GL(V)$ given by

$$\operatorname{Ind}_{H}^{G}(\theta)(g)(\sigma\otimes w) = g\sigma\otimes w$$

is called **induced** by θ .

Induced Representations - Alternative Definition

Definition

Let $\theta: H \to GL(W)$ be a linear representation which equips Wwith the structure of a left $\mathbb{C}H$ -module. Set $V = \mathbb{C}G \otimes_{\mathbb{C}H} W$. The representation $Ind_{H}^{G}(\theta): G \to GL(V)$ given by

$$\operatorname{Ind}_{H}^{G}(\theta)(g)(\sigma\otimes w) = g\sigma\otimes w$$

is called **induced** by θ .

• As $\bigoplus_{\sigma \in R} W_{\sigma} \cong \mathbb{C}G \otimes_{\mathbb{C}H} W$, both definitions are equivalent.

Induced Representations - Alternative Definition

Definition

Let $\theta : H \to GL(W)$ be a linear representation which equips Wwith the structure of a left $\mathbb{C}H$ -module. Set $V = \mathbb{C}G \otimes_{\mathbb{C}H} W$. The representation $Ind_{H}^{G}(\theta) : G \to GL(V)$ given by

$$\operatorname{Ind}_{H}^{G}(\theta)(g)(\sigma\otimes w) = g\sigma\otimes w$$

- is called **induced** by θ .
 - As $\bigoplus_{\sigma \in R} W_{\sigma} \cong \mathbb{C}G \otimes_{\mathbb{C}H} W$, both definitions are equivalent.
 - If f is a class function on H, the function defined by $\operatorname{Ind}_{H}^{G}(f)(u) := \frac{1}{|H|} \sum_{\substack{t \in G \\ t^{-1}ut \in H}} f(t^{-1}ut)$ for every $u \in G$ is the induced class function on G.

Examples of Induced Representations

Example

The regular representation r_G of G is induced by the regular representation r_H of every $H \subset G$: $\mathbb{C}G \cong \mathbb{C}G \otimes_{\mathbb{C}H} \mathbb{C}H$.

Examples of Induced Representations

Example

The regular representation r_G of G is induced by the regular representation r_H of every $H \subset G$: $\mathbb{C}G \cong \mathbb{C}G \otimes_{\mathbb{C}H} \mathbb{C}H$.

Example

Let $G = S_3$, $H = \mathbb{Z}_2$. Let τ be the signum rep. of H, let ϵ be the signum rep. of G and let ρ be the standard rep. of G. Then $Ind_{H}^{G}(\tau) = \epsilon \oplus \rho$.

Examples of Induced Representations

Example

The regular representation r_G of G is induced by the regular representation r_H of every $H \subset G$: $\mathbb{C}G \cong \mathbb{C}G \otimes_{\mathbb{C}H} \mathbb{C}H$.

Example

Let $G = S_3$, $H = \mathbb{Z}_2$. Let τ be the signum rep. of H, let ϵ be the signum rep. of G and let ρ be the standard rep. of G. Then $Ind_{H}^{G}(\tau) = \epsilon \oplus \rho$.

Example

For representations $\theta_i : H \to GL(W_i)$, i = 1, 2, of H, $Ind_H^G(\theta_1 \oplus \theta_2) = Ind_H^G(\theta_1) \oplus Ind_H^G(\theta_2)$.

Characters of Induced Representations

Theorem

Let θ : $H \to GL(W)$ be a representation of $H \subset G$ and R a system of representatives of G/H. Then, for each $u \in G$, we have

$$\operatorname{Ind}_{H}^{G}(\chi_{\theta})(u) = \sum_{\substack{r \in R \\ r^{-1}ur \in H}} \chi_{\theta}(r^{-1}ur) = \chi_{\operatorname{Ind}_{H}^{G}(\theta)}(u).$$

Characters of Induced Representations

Theorem

Let θ : $H \to GL(W)$ be a representation of $H \subset G$ and R a system of representatives of G/H. Then, for each $u \in G$, we have

$$\operatorname{Ind}_{H}^{G}(\chi_{\theta})(u) = \sum_{\substack{r \in R \\ r^{-1}ur \in H}} \chi_{\theta}(r^{-1}ur) = \chi_{\operatorname{Ind}_{H}^{G}(\theta)}(u).$$

Example

$$Ind_{H}^{G}(\chi_{r_{H}}) = \chi_{r_{G}}.$$

$$Ind_{H}^{G}(\chi_{\theta_{1}\oplus\theta_{2}}) = Ind_{H}^{G}(\chi_{\theta_{1}}) \oplus Ind_{H}^{G}(\chi_{\theta_{2}}) = \chi_{Ind_{H}^{G}(\theta_{1})} \oplus \chi_{Ind_{H}^{G}(\theta_{2})}.$$

Frobenius Reciprocity

Theorem (Frobenius Reciprocity)

Let E and W be a $\mathbb{C}G$ -module and a $\mathbb{C}H$ -module, respectively. Then, we have

 $\operatorname{Hom}_{G}(\operatorname{Ind}_{H}^{G}W, E) \cong \operatorname{Hom}_{H}(W, \operatorname{Res}_{H}^{G}E).$

Frobenius Reciprocity

Theorem (Frobenius Reciprocity)

Let E and W be a $\mathbb{C}G$ -module and a $\mathbb{C}H$ -module, respectively. Then, we have

$$\operatorname{Hom}_{G}(\operatorname{Ind}_{H}^{G}W, E) \cong \operatorname{Hom}_{H}(W, \operatorname{Res}_{H}^{G}E).$$

Corollary (Frobenius Reciprocity for Characters)

 $\langle \operatorname{\mathsf{Ind}}_{H}^{G} \chi_{\rho}, \chi_{\rho'} \rangle_{G} = \langle \chi_{\rho}, \operatorname{\mathsf{Res}}_{H}^{G} \chi_{\rho'} \rangle_{H}.$

Frobenius Reciprocity

Theorem (Frobenius Reciprocity)

Let E and W be a $\mathbb{C}G$ -module and a $\mathbb{C}H$ -module, respectively. Then, we have

$$\operatorname{Hom}_{\mathcal{G}}(\operatorname{Ind}_{H}^{\mathcal{G}}W, E) \cong \operatorname{Hom}_{\mathcal{H}}(W, \operatorname{Res}_{H}^{\mathcal{G}}E).$$

Corollary (Frobenius Reciprocity for Characters)

 $\langle \mathsf{Ind}_{H}^{\mathsf{G}} \chi_{\rho}, \chi_{\rho'} \rangle_{\mathsf{G}} = \langle \chi_{\rho}, \mathsf{Res}_{H}^{\mathsf{G}} \chi_{\rho'} \rangle_{H}.$

Frobenius Reciprocity states that if ρ and ρ' are irreducible representations of H and G, respectively, then the multiplicity of ρ' in $\operatorname{Ind}_{H}^{G}(\rho)$ equals the multiplicity of ρ in $\operatorname{Res}_{H}^{G}(\rho')$.

Example (2-dimensional irreducible representation of D_4)

$$\begin{split} \rho : r^k &\mapsto \begin{pmatrix} e^{2\pi i k/4} & 0 \\ 0 & e^{-2\pi i k/4} \end{pmatrix} \\ sr^k &\mapsto \begin{pmatrix} 0 & e^{-2\pi i k/4} \\ e^{2\pi i k/4} & 0 \end{pmatrix} \quad \text{for all } k = 0, 1, 2, 3. \end{split}$$

The cyclic subgroup $C_4 \leq D_4$ has an irreducible representation $\rho_1: C_4 \to \mathbb{C}^{\times}$ with character $\chi_{\rho_1}(r^k) = e^{2\pi i k/4}$ for k = 0, 1, 2, 3. By Frobenius reciprocity,

$$egin{aligned} &\langle \mathsf{Ind}_{\mathcal{C}_4}^{\mathcal{D}_4}(\chi_{
ho_1}), \chi_{
ho}
angle &= \langle \chi_{
ho_1}, \mathsf{Res}_{\mathcal{C}_4}^{\mathcal{D}_4}(\chi_{
ho})
angle \ &= rac{1}{4} (2 + 1 + e^{\pi i} + 1 + e^{2\pi i} + 1 + e^{3\pi i}) = 1. \end{aligned}$$

Hence, the irreducible ρ of D_4 is induced by the irreducible ρ_1 of C_4 .

Counterexample

Question: Is the induced representation of an irreducible representation always irreducible?

Counterexample

Question: Is the induced representation of an irreducible representation always irreducible?

Answer: No!

Example

Let $G = S_3$, $H = \mathbb{Z}_2$. Let τ be the signum representation of H, let ϵ be the signum representation of G and let ρ be the standard representation of G. We can compute

$$\begin{split} \chi_{\mathsf{Ind}_{H}^{G}(\tau)}(\mathsf{Id}) &= 3, \quad \chi_{\mathsf{Ind}_{H}^{G}(\tau)}((12)) = -1, \quad \chi_{\mathsf{Ind}_{H}^{G}(\tau)}((123)) = 0. \\ \chi_{\epsilon}(\mathsf{Id}) &= 1, \qquad \chi_{\epsilon}((12)) = -1, \qquad \chi_{\epsilon}((123)) = 1. \\ \chi_{\rho}(\mathsf{Id}) &= 2, \qquad \chi_{\rho}((12)) = 0, \qquad \chi_{\rho}((123)) = -1. \end{split}$$

 $\chi_{\mathrm{Ind}_{H}^{G}(\tau)} = \chi_{\epsilon} + \chi_{\rho}.$

Mackey's Irreducibility Criterion

Let
$$\rho: H \to GL(W)$$
, $H \leq G$, be a representation.
Let $H_s := sHs^{-1} \cap H$ for $s \in G$.
Let $\rho^s: H_s \to GL(W)$ be a representation given by
 $\rho^s(x) := \rho(s^{-1}xs)$ for $x \in H_s$.
Let $\operatorname{Res}_s(\rho)$ denote the restriction of ρ to H_s .

Mackey's Irreducibility Criterion

Let
$$\rho: H \to GL(W)$$
, $H \leq G$, be a representation.
Let $H_s := sHs^{-1} \cap H$ for $s \in G$.
Let $\rho^s: H_s \to GL(W)$ be a representation given by
 $\rho^s(x) := \rho(s^{-1}xs)$ for $x \in H_s$.
Let $\operatorname{Res}_s(\rho)$ denote the restriction of ρ to H_s .

Theorem (Mackey's Irreducibility Criterion)

In order that $\operatorname{Ind}_{H}^{G}(\rho)$ is an irreducible representation, it is **necessary and sufficient** that the following two conditions be satisfied:

(i) W is a simple left $\mathbb{C}H$ -module. (ii) For every $s \in G - H$, we have $\langle \rho^s, \operatorname{Res}_s(\rho) \rangle = 0$.

Acknowledgements

We would like to thank:

- Our mentor, Dr. Alexander Vitanov of MIT, for his valuable guidance throughout this year.
- MIT PRIMES for this wonderful opportunity.
- Prof. Pavel Etingof, Dr. Tanya Khovanova, and Dr. Slava Gerovitch for their advice and for organizing the PRIMES program.
- The MIT Math Department.

