▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Walks on Young's Lattice USA-PRIMES Reading Group

Kenji Nakagawa, Rishi Verma, Daniel Xu Mentor: Yan Sheng Ang

> PRIMES Conference December 2020

Introduction 000 Young's Lattic

Counting Paths

Acknowledgements 00

Table of Contents

2 Young's Lattice

3 Counting Paths

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Introduction	Young's Lattice	Counting Paths	Acknowledgements
●00	0000000	0000000	00
About Algebrai	c Combinatorics		

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Text: *Algebraic Combinatorics* by Richard Stanley Apply tools from linear algebra to combinatorial problems

- Walks on Graphs
- Group Actions
- Spanning Trees
- Electrical Networks
- Young Diagrams and Tableaux

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Young Diagrams

Definition

A *Young Diagram* is a collection of cells on a grid that are NW justified.

We refer to a Young Diagram by a nonincreasing sequence of numbers, representing the size of each row.

Introduction	Young's Lattice	Counting Paths	Acknowledgements
00●	0000000		00
Covering Relat	ions		

We say a Young Diagram λ covers μ if μ fits into λ and λ has exactly one more square than μ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction 00●	Young's Lattice	Counting Paths	Acknowledgements 00
Covering Relat	tions		

We say a Young Diagram λ covers μ if μ fits into λ and λ has exactly one more square than μ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Young's Lattice	Counting Paths	Acknowledgements
○○●	0000000	0000000	00
Covering Rela	ations		

We say a Young Diagram λ covers μ if μ fits into λ and λ has exactly one more square than μ .

Introduction	Young's Lattice	Counting Paths	Acknowledgements
000	●000000	0000000	00
Young's La	ttice		

Young's Lattice is a visual representation of the covering relations.

 $\mathbb{R}Y$ is the real vector space generated by the elements of Y. These are *formal sums* of Young Diagrams. A typical element looks like

We let α_{λ} refer to the coefficient of λ in α . For example,

$$\alpha_{\text{H}} = -1.5.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Young's Lattice	Counting Paths	Acknowledgements
000	00●0000	0000000	00
Formal Sums			

Note the distinction between the basis vector \emptyset and the vector $\vec{0}$.

The usual properties of scalar multiplication and vector addition hold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Linear transformations on $\mathbb{R}Y$ defined using the covering relations:

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

The order-raising and order-lowering operators U and D essentially model walking upwards and downwards on the lattice.

 $UD(\lambda)_{\mu}$ is the number of paths from λ to μ that go down then up.

(日) (四) (日) (日) (日)

 $DU(\lambda)_{\mu}$ is the number of paths from λ to μ that go up then down.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introdu	

Young's Lattice

Counting Paths

Acknowledgements 00

Operator Identity

More generally, let *P* be a sequence of *U*s and *D*s that correspond to a type of path on Young's Lattice starting from \emptyset .

A walk of type $D^2 U^4$ A walk of type UDU^4 $UDU^4(\lambda)_{\mu}$ is the number of walks of type UDU^4 from λ to μ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Note that the operators are applied right to left

Introduction	Young's Lattice	Counting Paths	Acknowledgements
000	0000000	0●00000	00
U^n and D^n			

Let $f^{\lambda} = (U^n \emptyset)_{\lambda}$ where $\lambda \vdash n$. Similarly, $f^{\lambda} = (D^n \lambda)_{\emptyset}$ by reversing the arrows.

Note that f^{λ} is the number of Standard Young Tableaux.

$$D^{4}U^{4}\emptyset = D^{4} (\lambda_{1} + 3\lambda_{2} + 2\lambda_{3} + 3\lambda_{4} + \lambda_{5})$$
$$= (1^{2} + 3^{2} + 2^{2} + 3^{2} + 1^{2}) \emptyset$$

In general,

$$(D^n U^n \emptyset)_{\emptyset} = \sum_{\lambda \vdash n} (f^{\lambda})^2.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Operator Lemma

Lemma

 $DU^k = U^k D + k U^{k-1}.$

Proof. Each time we swap a DU with a UD, we introduce a new U^{k-1} term, since we start with k U's to the right of D, we end up with U^kD and kU^{k-1} terms. For example,

$$DU^{3} = (UD + I)U^{2} = UDU^{2} + U^{2}$$

= $U(UD + I)U + U^{2} = U^{2}DU + 2U^{2}$
= $U^{2}(UD + I) + 2U^{2} = U^{3}D + 3U^{2}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction 000	Young's Lattice 0000000	Counting Paths 0000€00	Acknowledgements 00
Counting F	ormula		
Lemma			

We can compute $(D^n U^n \emptyset)_{\emptyset}$ another way using our lemma.

$$D^{n}U^{n}\emptyset = -D^{n-1}U^{n}D\emptyset + nD^{n-1}U^{n-1}\emptyset$$

= $-D^{n-2}U^{n-1}D\emptyset + n(n-1)D^{n-2}U^{n-2}\emptyset$
= ...
= $-DU^{2}D\emptyset + n(n-1)\cdots(2)DU\emptyset$
= $-UD\emptyset + n(n-1)\cdots(2)(1)I\emptyset$
= $n!\emptyset$

Hence, $\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!.$

 $DU^k = U^k D + k U^{k-1}$

Datha an Vaun	de l'attes		
Introduction	Young's Lattice	Counting Paths	Acknowledgements
000	0000000	0000000	00

Paths on Young's Lattice

We can use this argument to count paths of arbitrary type. For example,

$$UD^{2}U^{3}DU^{4}\emptyset = -UD^{2}U^{7}D\emptyset + 4UD^{2}U^{6}\emptyset$$
$$= -4UDU^{6}D\emptyset + 24UDU^{5}\emptyset$$
$$= -24U^{6}D\emptyset + 120U^{5}\emptyset$$

And so, for
$$\lambda \vdash 5$$
,
 $\left(UD^2U^3DU^4\emptyset\right)_{\lambda} = 120f^{\lambda}.$

Theorem

Let y_i be the level of Young's Lattice we occupy before taking the *i*th downward step. Then the number of paths of type P starting from \emptyset and ending at λ is given by

$$f^{\lambda}\prod y_{i}$$

	to Representati		00
Introduction	Young's Lattice	Counting Paths	Acknowledgements

$$\sum_{\lambda \vdash n} \left(f^{\lambda} \right)^2 = n!$$

This is a specific case of the more general fact that if ρ_1, \ldots, ρ_r are the *irreducible representations* of a finite group *G*, then

$$\sum_{1\leq i\leq r} (\dim(\rho_i))^2 = |G|.$$

A common theme throughout this book is studying group-like structures through linear algebra, so some of the results are heavily linked to representation theory.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Acknowledgements

Thanks to ...

- Our mentor, Yan Sheng, who provided continual support and guidance throughout the year.
- MIT PRIMES for providing such a wonderful opportunity.
- Prof. Pavel Etingof, Dr. Slava Gerovitch, and Dr. Tanya Khovanova for helping organize PRIMES.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Walks on Young's Lattice USA-PRIMES Reading Group

Kenji Nakagawa, Rishi Verma, Daniel Xu Mentor: Yan Sheng Ang

> PRIMES Conference December 2020