Walks on Young's Lattice USA-PRIMES Reading Group

Kenji Nakagawa, Rishi Verma, Daniel Xu Mentor: Yan Sheng Ang

PRIMES Conference

December 2020

Table of Contents

(1) Introduction
(2) Young's Lattice
(3) Counting Paths
(4) Acknowledgements

About Algebraic Combinatorics

Text: Algebraic Combinatorics by Richard Stanley
Apply tools from linear algebra to combinatorial problems

- Walks on Graphs
- Group Actions
- Spanning Trees
- Electrical Networks
- Young Diagrams and Tableaux

Young Diagrams

Definition

A Young Diagram is a collection of cells on a grid that are NW justified.

We refer to a Young Diagram by a nonincreasing sequence of numbers, representing the size of each row.

Covering Relations

We say a Young Diagram λ covers μ if μ fits into λ and λ has exactly one more square than μ.

Example:

Covering Relations

We say a Young Diagram λ covers μ if μ fits into λ and λ has exactly one more square than μ.

Example:

Covering Relations

We say a Young Diagram λ covers μ if μ fits into λ and λ has exactly one more square than μ.

Example:

and

Young's Lattice

Young's Lattice is a visual representation of the covering relations.

Formal Sums

$\mathbb{R} Y$ is the real vector space generated by the elements of Y. These are formal sums of Young Diagrams.
A typical element looks like

We let α_{λ} refer to the coefficient of λ in α. For example,

$$
\alpha_{\square}=-1.5 .
$$

Formal Sums

Note the distinction between the basis vector \emptyset and the vector $\overrightarrow{0}$.

$$
\begin{aligned}
& \emptyset+\emptyset=2 \cdot \emptyset \\
& \overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}
\end{aligned}
$$

The usual properties of scalar multiplication and vector addition hold.

Order-Raising and Order-Lowering Operators

Linear transformations on $\mathbb{R} Y$ defined using the covering relations:

$$
\begin{aligned}
& U: \mathbb{R} Y \rightarrow \mathbb{R} Y \\
& U(\lambda)=\sum_{\mu \text { covers } \lambda} \mu \\
& D: \mathbb{R} Y \rightarrow \mathbb{R} Y \\
& D(\lambda)=\sum_{\lambda \text { covers } \mu} \mu \\
& \cup\binom{\square}{\square}=\square \square \square+\square
\end{aligned}
$$

Counting Paths

The order-raising and order-lowering operators U and D essentially model walking upwards and downwards on the lattice.

$U D(\lambda)_{\mu}$ is the number of paths from λ to μ that go down then up.

Counting Paths

$D U(\lambda)_{\mu}$ is the number of paths from λ to μ that go up then down.

Operator Identity

Theorem

$$
D U-U D=I_{\mathbb{R} Y}
$$

Examples of Walks

More generally, let P be a sequence of $U s$ and $D s$ that correspond to a type of path on Young's Lattice starting from \emptyset.

A walk of type $D^{2} U^{4}$ $U D U^{4}(\lambda)_{\mu}$ is the number of walks of type $U D U^{4}$ from λ to μ.

Note that the operators are applied right to left

Let's compute $\left(U^{4} \emptyset\right)_{\boxminus}$

Let $f^{\lambda}=\left(U^{n} \emptyset\right)_{\lambda}$ where $\lambda \vdash n$. Similarly, $f^{\lambda}=\left(D^{n} \lambda\right)_{\emptyset}$ by reversing the arrows.
Note that f^{λ} is the number of Standard Young Tableaux.

$D^{n} U^{n}$ Walks

- $f^{\lambda_{1}}=1$.
- $f^{\lambda_{2}}=3$
- $f^{\lambda_{3}}=2$
- $f^{\lambda_{4}}=f^{\lambda_{2}}$ and $f^{\lambda_{5}}=f^{\lambda_{1}}$

$$
\begin{aligned}
D^{4} U^{4} \emptyset & =D^{4}\left(\lambda_{1}+3 \lambda_{2}+2 \lambda_{3}+3 \lambda_{4}+\lambda_{5}\right) \\
& =\left(1^{2}+3^{2}+2^{2}+3^{2}+1^{2}\right) \emptyset
\end{aligned}
$$

In general,

$$
\left(D^{n} U^{n} \emptyset\right)_{\emptyset}=\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2} .
$$

Operator Lemma

Lemma

$$
D U^{k}=U^{k} D+k U^{k-1}
$$

Proof. Each time we swap a $D U$ with a $U D$, we introduce a new U^{k-1} term, since we start with $k U$'s to the right of D, we end up with $U^{k} D$ and $k U^{k-1}$ terms. For example,

$$
\begin{array}{rlr}
D U^{3} & =(U D+I) U^{2} & =U D U^{2}+U^{2} \\
& =U(U D+I) U+U^{2}=U^{2} D U+2 U^{2} \\
& =U^{2}(U D+I)+2 U^{2}=U^{3} D+3 U^{2}
\end{array}
$$

Counting Formula

Lemma

$$
D U^{k}=U^{k} D+k U^{k-1}
$$

We can compute $\left(D^{n} U^{n} \emptyset\right)_{\emptyset}$ another way using our lemma.

$$
\begin{aligned}
D^{n} U^{n} \emptyset & =D^{n-1} U^{n} D \emptyset+n D^{n-1} U^{n-1} \emptyset \\
& =D^{n-2} U^{n-1} D \emptyset+n(n-1) D^{n-2} U^{n-2} \emptyset \\
& =\cdots \\
& =D U^{2} D \emptyset+n(n-1) \cdots(2) D U \emptyset \\
& =U D \emptyset+n(n-1) \cdots(2)(1) I \emptyset \\
& =n!\emptyset
\end{aligned}
$$

Hence, $\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}=n!$.

Paths on Young's Lattice

We can use this argument to count paths of arbitrary type. For example,

$$
\begin{aligned}
U D^{2} U^{3} D U^{4} \emptyset & =U D^{2} U^{7} D \emptyset+4 U D^{2} U^{6} \emptyset \\
& =-4 U D U^{6} D \emptyset+24 U D U^{5} \emptyset \\
& =24 U^{6} D \emptyset+120 U^{5} \emptyset
\end{aligned}
$$

And so, for $\lambda \vdash 5$,

$$
\left(U D^{2} U^{3} D U^{4} \emptyset\right)_{\lambda}=120 f^{\lambda}
$$

Theorem

Let y_{i} be the level of Young's Lattice we occupy before taking the ith downward step. Then the number of paths of type P starting from \emptyset and ending at λ is given by

$$
f^{\lambda} \Pi{ }^{2}
$$

Connections to Representation Theory

$$
\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}=n!
$$

This is a specific case of the more general fact that if $\rho_{1}, \ldots \rho_{r}$ are the irreducible representations of a finite group G, then

$$
\sum_{1 \leq i \leq r}\left(\operatorname{dim}\left(\rho_{i}\right)\right)^{2}=|G| .
$$

A common theme throughout this book is studying group-like structures through linear algebra, so some of the results are heavily linked to representation theory.

Acknowledgements

Thanks to...

- Our mentor, Yan Sheng, who provided continual support and guidance throughout the year.
- MIT PRIMES for providing such a wonderful opportunity.
- Prof. Pavel Etingof, Dr. Slava Gerovitch, and Dr. Tanya Khovanova for helping organize PRIMES.

Walks on Young's Lattice USA-PRIMES Reading Group

Kenji Nakagawa, Rishi Verma, Daniel Xu Mentor: Yan Sheng Ang

PRIMES Conference

December 2020

