The Prime Number Theorem A PRIMES Exposition

Ishita Goluguri, Toyesh Jayaswal, Andrew Lee Mentor: Chengyang Shao

TABLE OF CONTENTS

(1) Introduction

2 Tools from Complex Analysis
(3) Entire Functions
4) Hadamard Factorization Theorem
(5) Riemann Zeta Function

6 Chebyshev Functions
(7) Perron Formula

8 Prime Number Theorem

Introduction

- Euclid (300 BC): There are infinitely many primes
- Legendre (1808): for primes less than $1,000,000$:

$$
\pi(x) \simeq \frac{x}{\log x}
$$

Progress on the Distribution of Prime Numbers

- Euler: The product formula

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-p^{-s}}
$$

so (heuristically)

$$
\prod_{p} \frac{1}{1-p^{-1}}=\log \infty
$$

- Chebyshev (1848-1850): if the ratio of $\pi(x)$ and $x / \log x$ has a limit, it must be 1
- Riemann (1859): On the Number of Primes Less Than a Given Magnitude, related $\pi(x)$ to the zeros of $\zeta(s)$ using complex analysis
- Hadamard, de la Vallée Poussin (1896): Proved independently the prime number theorem by showing $\zeta(s)$ has no zeros of the form $1+i t$, hence the celebrated prime number theorem

Tools from Complex Analysis

Theorem (Maximum Principle)

Let Ω be a domain, and let f be holomorphic on Ω.
(A) $|f(z)|$ cannot attain its maximum inside Ω unless f is constant.
(B) The real part of f cannot attain its maximum inside Ω unless f is a constant.

Theorem (Jensen's Inequality)

Suppose f is holomorphic on the whole complex plane and $f(0)=1$. Let $M_{f}(R)=\max _{|z|=R}|f(z)|$. Let $N_{f}(t)$ be the number of zeros of f with norm $\leq t$ where a zero of multiplicity n is counted n times. Then

$$
\int_{0}^{R} \frac{N_{f}(t)}{t} d t \leq \log M_{f}(R)
$$

- Relates growth of a holomorphic function to distribution of its zeroes
- Used to bound the number of zeroes of an entire function

Theorem (Borel-Carathéodory Lemma)

Suppose $f=u+i v$ is holomorphic on the whole complex plane. Suppose $u \leq A$ on $\partial B(0, R)$. Then

$$
\left|f^{(n)}(0)\right| \leq \frac{2 n!}{R^{n}}(A-u(0))
$$

- Bounds all derivatives of f at 0 using only the real part of f
- Used in proof of Hadamard Factorization Theorem to prove that function is a polynomial by taking limit and showing that nth derivative approaches 0

Entire Functions

Definition (Order)

The order of an entire function, f, is the infimum of all possible $\lambda>0$ such that there exists constants A and B that satisfy

$$
|f(z)| \leq A e^{B|z|^{\lambda}}
$$

- $\sin z, \cos z$ have order 1
- $\cos \sqrt{z}$ has order $1 / 2$

Entire Functions

Theorem

Let f be an entire function of order λ with $f(0)=1$. Then, for any $\varepsilon>0$ there exists a constant, C_{ε}, that satisfies

$$
N_{f}(R) \leq C_{\varepsilon} R^{\lambda+\varepsilon}
$$

Theorem

Let f be an entire function of order λ with $f(0)=1$ and a_{1}, a_{2}, \ldots be the zeroes of f in non-decreasing order of norms. Then, for any $\varepsilon>0$,

$$
\sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|^{\lambda+\varepsilon}}<\infty
$$

In other words, the convergence index of the zeros is at most λ.

For example, $\sin z$ and $\cos z$ have order 1, and their zeroes grow linearly while $\cos \sqrt{z}$ has order $1 / 2$, and its zeroes grow quadratically.

Hadamard Factorization Theorem

Theorem (Hadamard Factorization Theorem)

A complex entire function $f(z)$ of finite order λ and roots a_{i} can be written as

$$
f(z)=e^{Q(z)} \prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) \exp \left(\sum_{k=1}^{p} \frac{z^{k}}{k a_{n}^{k}}\right)
$$

with $p=\lfloor\lambda\rfloor$, and $Q(z)$ being some polynomial of degree at most p

The theorem extends the property of polynomials to be factored based on their roots as

$$
k \prod_{i=1}^{n}\left(1-\frac{z}{a_{i}}\right)
$$

proof

The proof is based off of truncating the first p terms of the series

$$
\log \left(1-\frac{z}{a_{n}}\right)=-\sum_{k=1}^{\infty} \frac{z^{k}}{k a_{n}^{k}}
$$

which bounds the magnitude to $O\left(R^{\lambda+\epsilon}\right)$ and gives rise to the exponential factor. Now,

$$
g(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) \exp \left(\sum_{k=1}^{p} \frac{z^{k}}{k a_{n}^{k}}\right)
$$

has the same roots as $f(z)$ and the polynomial $Q(z)$ is found by taking the logarithm of $f(z) / g(z)$. The degree of Q is determined by bounding the derivatives using the Borel-Carathéodory lemma.

Riemann Zeta Function

Definition (Reimann ζ Function)

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, s=\sigma+i t, \sigma>1
$$

Theorem (Euler Product Formula)

The zeta function can also be written as

$$
\zeta(s)=\prod_{p} \frac{1}{1-p^{-s}}
$$

The Euler product formula is the analytic equivalent of the unique factorization theorem for integers.

Chebyshev Functions

Definition (Van-Mangoldt Function)

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{m} \text { for some prime } p \text { and some } m \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Definition (Chebyshev Functions)

$$
\psi(x)=\sum_{n \leq x} \Lambda(n), \vartheta(x)=\sum_{p \leq x} \log p
$$

Theorem

$$
\frac{\zeta^{\prime}}{\zeta}(s)=-\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}}
$$

Equivalent Asymptotic Expressions

The Chebyshev functions can be related to $\pi(x)$ by the following integral expressions.

Theorem

$$
\begin{gathered}
\vartheta(x)=\pi(x) \log x+\int_{2}^{x} \frac{\pi(t)}{t} d t \\
\pi(x)=\frac{\vartheta(x)}{\log x}+\int_{2}^{x} \frac{\vartheta(t)}{t \log ^{2} t} d t
\end{gathered}
$$

Studying the asymptotic behavior of the formulas, we see that all of the following expressions are logically equivalent:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1 \\
\lim _{x \rightarrow \infty} \frac{\vartheta(x)}{x}=1 \\
\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=1
\end{gathered}
$$

Perron Formula

The Perron Formula acts as a filter to isolate the first finitely many terms from a Dirichlet series.

Theorem (Perron Formula)

Let $F(s)=\sum_{n=1}^{\infty} f(n) / n^{s}$ be absolutely convergent for $\sigma>\sigma_{a}$. Then for arbitrary $c, x>0$, if $\sigma>\sigma_{a}-c$,

$$
\frac{1}{2 \pi i} \int_{c-\infty i}^{c+\infty i} F(s+z) \frac{x^{z}}{z} d z=\sum_{n \leq x} * \frac{f(n)}{n^{s}}
$$

where \sum^{*} means that the last term is halved when x is an integer.

Corollary

For $x>0$,

$$
\int_{0}^{x} \frac{\psi(y)}{y} d y=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty}-\frac{\zeta^{\prime}}{\zeta}(s) \frac{x^{s}}{s^{2}} d s
$$

Reimann Zeta Function Continued

We define a function ξ in terms of Γ, ζ and π to obtain a functional equation that gives information about the symmetry of zero distribution.

Definition

$$
\xi(s)=\frac{\Gamma\left(\frac{s}{2}\right) \zeta(s)}{\pi^{s / 2}}
$$

Theorem (Functional Equation, Riemann 1859)

$$
\xi(s)=\xi(1-s)
$$

The proof relies on the Poisson summation formula from Fourier analysis.

Proof of the Functional Equation

$$
\begin{aligned}
\frac{\Gamma\left(\frac{s}{2}\right) \zeta(s)}{\pi^{s / 2}} & =\sum_{n=1}^{\infty} \int_{0}^{\infty} x^{s / 2-1} e^{-n^{2} \pi x} d x \\
& =\int_{0}^{\infty} x^{s / 2-1} \Psi(x) d x=\int_{0}^{1}+\int_{1}^{\infty}
\end{aligned}
$$

where

$$
\Psi(x)=\sum_{n=1}^{\infty} e^{-\pi n^{2} x}
$$

Using the Poisson summating formula,

$$
2 \Psi(x)+1=\frac{1}{\sqrt{x}}\left(2 \Psi\left(\frac{1}{x}\right)+1\right)
$$

substituting into the integral from 0 to 1 ,

$$
\xi(s)=\frac{1}{s(s-1)}+\int_{0}^{1} x^{s / 2-3 / 2} \Psi\left(\frac{1}{x}\right) d x+\int_{1}^{\infty} x^{s / 2-1} \Psi(x) d x
$$

Changing the variable $x \rightarrow \frac{1}{x}$

$$
\xi(s)=\frac{\Gamma\left(\frac{s}{2}\right) \zeta(s)}{\pi^{s / 2}}=\frac{1}{s(s-1)}+\int_{1}^{\infty}\left(x^{-s / 2-1 / 2}+x^{s / 2-1}\right) \Psi(x) d x
$$

Substituting $s=1-s$ gives $\xi(s)=\xi(1-s)$.

p-adic Analysis

- The functional relations of $\zeta(s)$ can remarkably be obtained by studying the theory of p-adic numbers.
- Generally, the distance between two numbers is considered using the usual metric $|x-y|$, but for every prime p, a separate notion of distance can be made for \mathbb{Q}.
- For a rational number $x=p^{n} a / b, p \nmid a, b$, we define the p-adic absolute value as $|x|_{p}=p^{-n}$. Then, the p-adic distance between two numbers is defined as $|x-y|_{p}$.
- The p-adic absolute value is multiplicative, positive definite, and satisfies the strong triangle inequality: $|x-y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right) \leq|x|_{p}+|y|_{p}$
- Examples:

$$
\begin{gathered}
|7 / 24|_{2}=8 \\
|2-27|_{5}=1 / 25
\end{gathered}
$$

- \mathbb{Q} can be completed under this metric to form the field \mathbb{Q}_{p}
- \mathbb{Q}_{p} contains a subring, \mathbb{Z}_{p}, which is the completion of \mathbb{Z} under $|\cdot|_{p}$
- \mathbb{Z}_{p} can be written using an "infinite p-adic expansion" with no negative powers and numbers in \mathbb{Q}_{p} have finite negative powers
- Example: in \mathbb{Q}_{5},

$$
\ldots+5^{2}+5+1=\sum_{n=0}^{\infty} 5^{n}=\frac{1}{1-5}=-\frac{1}{4} \in \mathbb{Z}_{5}
$$

$$
\text { and }-1 / 5=\ldots 111 \times \frac{4}{5}=\ldots 444.4
$$

- Letting \mathbb{Z}_{p}^{\times}denote the elements of \mathbb{Z}_{p} for which $|x|_{p}=1, \mathbb{Q}_{p}^{\times}=\bigcup_{n \in \mathbb{Z}} p^{n} \mathbb{Z}_{p}^{\times}$

Adèles and Idèles

- The fields \mathbb{R} and \mathbb{Q}_{p} can be put together to form what is called the ring of Adèles
- The Adèle ring $\mathbb{A}_{\mathbb{Q}}$ is the collection of sequences $x=\left\{x_{p}\right\}_{p \in \mathbb{P} \cup\{\infty\}}$ for the primes \mathbb{P} and where for each $p \in \mathbb{P}, x_{p} \in \mathbb{Q}_{p}$ and $x_{\infty} \in \mathbb{R}$ with almost all $x_{p} \in \mathbb{Z}_{p}$
- The Idèle group $\mathbb{I}_{\mathbb{Q}}$ is the collection of Adèles for which almost all $x_{p} \in \mathbb{Z}_{p}^{\times}$ and forms a group under componentwise multiplication
- We can also introduce a topology on $\mathbb{I}_{\mathbb{Q}}$ with open sets being the product of open sets in \mathbb{R}^{\times}and \mathbb{Q}_{p}^{\times}, making $\mathbb{I}_{\mathbb{Q}}$ is a locally compact abelian group, a Haar measure, μ, can be formed for it
- Introduce the volume function $\|x\|:=\left|x_{\infty}\right| \times \prod_{p \in \mathbb{P}}\left|x_{p}\right|_{p}$ and the function $\varphi(x):=\exp \left(-\pi\left|x_{\infty}\right|^{2}\right) \prod \mathbf{1}_{\mathbb{Z}_{p}}\left(x_{p}\right)$ and consider the integral

$$
\int_{\mathbb{I}_{\mathbb{Q}}} \varphi(x)\|x\|^{s} d \mu(x)
$$

The ξ Function Revisited

The integral can be split into the real and p-adic components to obtain

$$
\xi(s)=\left(\int_{\mathbb{R}^{\times}} e^{-\pi|t|^{2}}|t|^{s} \frac{d t}{t}\right) \times\left(\prod_{p} \int_{\mathbb{Z}_{p}^{\times}}\left|x_{p}\right|_{p}^{s} d \mu_{p}^{\times}\left(x_{p}\right)\right) .
$$

The first integral turns out to be $\Gamma\left(\frac{s}{2}\right) \pi^{-s / 2}$ and the latter ones are $\frac{1}{1-p^{-s}}$ which combine to form $\zeta(s)$. So the integral coincides with the $\xi(s)$ introduced before:

$$
\xi(s)=\Gamma\left(\frac{s}{2}\right) \zeta(s) \pi^{-s / 2} .
$$

The ξ Function Revisited

- The integral can also be evaluated in a different way using the fact that \mathbb{Q}^{\times} naturally embeds into $\mathbb{I}_{\mathbb{Q}}$ with constant sequences to form the group of principal idèles
- Taking the integral by considering equivalences classes, \bar{x}, of $\mathbb{I}_{\mathbb{Q}}$ over the principal idèles, it can be shown that

$$
\begin{aligned}
\xi(s)= & \int_{\|\bar{x}\|>1}\left(\|\bar{x}\|^{s}+\|\bar{x}\|^{1-s}\right)(\Theta(\bar{x})-1) d \bar{\mu}(\bar{x}) \\
& +\int_{\|\bar{x}\|>1}\left(\|\bar{x}\|^{1-s}-\|\bar{x}\|^{-s}\right) d \bar{\mu}(\bar{x})
\end{aligned}
$$

for the Jacobi theta function

$$
\Theta(\bar{x})=1+2 \sum_{n=1}^{\infty} e^{-\pi n^{2}\|\bar{x}\|^{2}}
$$

which gives $\xi(s)=\xi(1-s)$ by using the Poisson summation formula.

- The Poisson identity translates into Fourier analysis on $\mathbb{I}_{\mathbb{Q}}$.

Factorization of $\zeta(s)$

- We find that this function is asymptotically related to Γ by

$$
\xi(s) \sim \Gamma\left(\frac{s}{2}\right)
$$

as $s \rightarrow+\infty$.

- Using the Hadamard Factorization Theorem, we obtain

$$
\xi(s)=\frac{e^{a s+b}}{s(1-s)} \prod_{\rho}\left(1-\frac{s}{\rho}\right) e^{s / \rho}
$$

- Hence

$$
\zeta(s)=\frac{e^{A+D s}}{s-1} \prod_{\rho}\left(1-\frac{s}{\rho}\right) e^{s / \rho} \prod_{n=1}^{\infty}\left(1+\frac{s}{2 n}\right) e^{-s /(2 n)}
$$

Explicit Formula for Primes

Theorem

For $x>0$, not equal to an integer,

$$
\int_{0}^{x} \frac{\psi(y)}{y} d y=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty}-\frac{\zeta^{\prime}}{\zeta}(s) \frac{x^{s}}{s^{2}} d s
$$

Substituting in

$$
\frac{\zeta^{\prime}}{\zeta}(s)=D-\frac{1}{s-1}+\sum_{p}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)+\sum_{n=1}^{\infty}\left(\frac{1}{s+2 n}-\frac{1}{2 n}\right)
$$

calculating the integrals using the residue theorem, We finally get the explicit formula for primes:

$$
\int_{0}^{x} \frac{\psi(y)}{y} d y=x-(D+2) \log x-\sum_{\rho} \frac{x^{\rho}}{\rho^{2}}+\left(\frac{\pi^{2}}{24}+\sum_{\rho} \frac{1}{\rho^{2}}\right)-\sum_{n=1}^{\infty} \frac{x^{-2 n}}{4 n^{2}}
$$

Prime Number Theorem

Theorem (de la Valleé Poussin, Hadamard, 1896)

No zero of $\zeta(s)$ has real part 1.

Proof.

Taking the logarithm of the Euler product representation of $\zeta(s)$, we get

$$
\log |\zeta(\sigma+i t)|=-\operatorname{Re} \sum_{p} \log \left(1-p^{-(\sigma+i t)}\right)=\sum_{p} \sum_{n=1}^{\infty} \frac{1}{n p^{n \sigma}} \cos (n t \log p)
$$

So
$3 \log |\zeta(\sigma)|+4 \log |\zeta(\sigma+i t)|+\log |\zeta(\sigma+2 i t)|=\sum_{p} \sum_{n=1}^{\infty} \frac{1}{n p^{n \sigma}} 2(\cos (n t \log p)+1)^{2} \geq 0$
Thus,

$$
|\zeta(\sigma)|^{3}|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \geq 1, \sigma>1
$$

So if $1+i t$ is a zero of $\zeta(s)$, then letting $\sigma \downarrow 1$, we arrive at a contradiction.

Zero-Free Region

Thus, all ρ lie in the strip $0<\operatorname{Re}(\rho)<1$. So there is a continuous non-increasing function $h:[0, \infty) \rightarrow(0,1)$, such that $\zeta(s)$ is zero-free in the region $\sigma<h(t)$.

We use this fact to bound

$$
\left|\sum_{\rho} \frac{x^{\rho}}{\rho^{2}}\right|=o(x)
$$

Thus,

$$
\int_{0}^{x} \frac{\psi(y)}{y} d y=x+o(x),
$$

which is equivalent to the prime number theorem.

Prime Number Theorem with Error Term

The more we increase the bounds on the zero-free region, the better our precision of our estimate will be.

Theorem (de la Vallée Poussin, 1898)
There is a constant $A>0$ such that $\zeta(s)$ has no zero in the region

$$
\sigma<1-\frac{A}{\log (2+t)}, t \geq 0
$$

We use this to bound $\psi(y)$ and use the relations between the Chebychev functions to $\pi(x)$ to get

$$
\pi(x)=\mathrm{Li}(x)+O\left(x e^{-c \sqrt{\log x}}\right)
$$

which is the prime number theorem with error term.

