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Introduction

• Euclid (300 BC): There are infinitely many primes
• Legendre (1808): for primes less than 1,000,000:

π(x) ' x

log x
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Progress on the Distribution of Prime Numbers

• Euler: The product formula

ζ(s) :=
∞∑
n=1

1

ns
=
∏
p

1

1− p−s

so (heuristically) ∏
p

1

1− p−1
= log∞

• Chebyshev (1848-1850): if the ratio of π(x) and x/ log x has a limit, it must
be 1

• Riemann (1859): On the Number of Primes Less Than a Given Magnitude,
related π(x) to the zeros of ζ(s) using complex analysis
• Hadamard, de la Vallée Poussin (1896): Proved independently the prime

number theorem by showing ζ(s) has no zeros of the form 1 + it, hence the
celebrated prime number theorem
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Tools from Complex Analysis

Theorem (Maximum Principle)

Let Ω be a domain, and let f be holomorphic on Ω.
(A) |f(z)| cannot attain its maximum inside Ω unless f is constant.
(B) The real part of f cannot attain its maximum inside Ω unless f is a constant.

Theorem (Jensen’s Inequality)

Suppose f is holomorphic on the whole complex plane and f(0) = 1. Let
Mf (R) = max|z|=R |f(z)|. LetNf (t) be the number of zeros of f with norm≤ t where a
zero of multiplicity n is counted n times. Then∫ R

0

Nf (t)

t
dt ≤ logMf (R).

• Relates growth of a holomorphic function to distribution of its zeroes
• Used to bound the number of zeroes of an entire function
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Theorem (Borel-Carathéodory Lemma)

Suppose f = u+ iv is holomorphic on the whole complex plane. Suppose u ≤ A on
∂B(0, R). Then

|f (n)(0)| ≤
2n!

Rn
(A− u(0))

• Bounds all derivatives of f at 0 using only the real part of f
• Used in proof of Hadamard Factorization Theorem to prove that function is

a polynomial by taking limit and showing that nth derivative approaches 0
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Entire Functions

Definition (Order)

The order of an entire function, f , is the infimum of all possible λ > 0 such that there
exists constants A and B that satisfy

|f(z)| ≤ AeB|z|
λ

• sin z, cos z have order 1
• cos

√
z has order 1/2
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Entire Functions

Theorem

Let f be an entire function of order λ with f(0) = 1. Then, for any ε > 0 there exists a
constant, Cε , that satisfies

Nf (R) ≤ CεRλ+ε

Theorem

Let f be an entire function of order λ with f(0) = 1 and a1, a2, ... be the zeroes of f in
non-decreasing order of norms. Then, for any ε > 0,

∞∑
n=1

1

|an|λ+ε
<∞

In other words, the convergence index of the zeros is at most λ.

For example, sin z and cos z have order 1, and their zeroes grow linearly while
cos
√
z has order 1/2, and its zeroes grow quadratically.
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Hadamard Factorization Theorem

Theorem (Hadamard Factorization Theorem)

A complex entire function f(z) of finite order λ and roots ai can be written as

f(z) = eQ(z)
∞∏
n=1

(
1−

z

an

)
exp

(
p∑
k=1

zk

kakn

)
with p = bλc, andQ(z) being some polynomial of degree at most p

The theorem extends the property of polynomials to be factored based on their
roots as

k

n∏
i=1

(
1− z

ai

)
.
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proof

The proof is based off of truncating the first p terms of the series

log

(
1− z

an

)
= −

∞∑
k=1

zk

kakn

which bounds the magnitude to O(Rλ+ε) and gives rise to the exponential
factor. Now,

g(z) =

∞∏
n=1

(
1− z

an

)
exp

(
p∑
k=1

zk

kakn

)
has the same roots as f(z) and the polynomial Q(z) is found by taking the
logarithm of f(z)/g(z). The degree of Q is determined by bounding the
derivatives using the Borel-Carathéodory lemma.
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Riemann Zeta Function

Definition (Reimann ζ Function)

ζ(s) =
∞∑
n=1

1

ns
, s = σ + it, σ > 1.

Theorem (Euler Product Formula)

The zeta function can also be written as

ζ(s) =
∏
p

1

1− p−s

The Euler product formula is the analytic equivalent of the unique factorization
theorem for integers.
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Chebyshev Functions

Definition (Van-Mangoldt Function)

Λ(n) =

{
log p if n = pm for some prime p and somem ≥ 1

0 otherwise

Definition (Chebyshev Functions)

ψ(x) =
∑
n≤x

Λ(n), ϑ(x) =
∑
p≤x

log p.

Theorem

ζ′

ζ
(s) = −

∞∑
n=1

Λ(n)

ns
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Equivalent Asymptotic Expressions

The Chebyshev functions can be related to π(x) by the following integral
expressions.

Theorem

ϑ(x) = π(x) log x+

∫ x

2

π(t)

t
dt

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt

Studying the asymptotic behavior of the formulas, we see that all of the
following expressions are logically equivalent:

lim
x→∞

π(x) log x

x
= 1

lim
x→∞

ϑ(x)

x
= 1

lim
x→∞

ψ(x)

x
= 1
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Perron Formula

The Perron Formula acts as a filter to isolate the first finitely many terms from a
Dirichlet series.

Theorem (Perron Formula)

Let F (s) =
∑∞
n=1 f(n)/ns be absolutely convergent for σ > σa. Then for arbitrary

c, x > 0, if σ > σa − c,

1

2πi

∫ c+∞i

c−∞i
F (s+ z)

xz

z
dz =

∑
n≤x

∗ f(n)

ns

where
∑∗ means that the last term is halved when x is an integer.

Corollary

For x > 0, ∫ x

0

ψ(y)

y
dy =

1

2πi

∫ 2+i∞

2−i∞
−
ζ′

ζ
(s)

xs

s2
ds
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Reimann Zeta Function Continued

We define a function ξ in terms of Γ, ζ and π to obtain a functional equation that
gives information about the symmetry of zero distribution.

Definition

ξ(s) =
Γ
(
s
2

)
ζ(s)

πs/2
.

Theorem (Functional Equation, Riemann 1859)

ξ(s) = ξ(1− s)

The proof relies on the Poisson summation formula from Fourier analysis.
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Proof of the Functional Equation

Γ
(
s
2

)
ζ(s)

πs/2
=

∞∑
n=1

∫ ∞
0

xs/2−1e−n
2πxdx

=

∫ ∞
0

xs/2−1Ψ(x)dx =

∫ 1

0

+

∫ ∞
1

where

Ψ(x) =

∞∑
n=1

e−πn
2x.

Using the Poisson summating formula,

2Ψ(x) + 1 =
1√
x

(
2Ψ

(
1

x

)
+ 1

)
,

substituting into the integral from 0 to 1,

ξ(s) =
1

s(s− 1)
+

∫ 1

0

xs/2−3/2Ψ

(
1

x

)
dx+

∫ ∞
1

xs/2−1Ψ(x)dx.
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Changing the variable x→ 1
x

ξ(s) =
Γ
(
s
2

)
ζ(s)

πs/2
=

1

s(s− 1)
+

∫ ∞
1

(
x−s/2−1/2 + xs/2−1

)
Ψ(x)dx

Substituting s = 1− s gives ξ(s) = ξ(1− s).
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p-adic Analysis

• The functional relations of ζ(s) can remarkably be obtained by studying the
theory of p-adic numbers.
• Generally, the distance between two numbers is considered using the usual

metric |x− y|, but for every prime p, a separate notion of distance can be
made for Q.
• For a rational number x = pna/b, p - a, b, we define the p-adic absolute value

as |x|p = p−n. Then, the p-adic distance between two numbers is defined
as |x− y|p.
• The p-adic absolute value is multiplicative, positive definite, and satisfies

the strong triangle inequality: |x− y|p ≤ max(|x|p, |y|p) ≤ |x|p + |y|p
• Examples:

|7/24|2 = 8

|2− 27|5 = 1/25
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Qp

• Q can be completed under this metric to form the field Qp
• Qp contains a subring, Zp, which is the completion of Z under | · |p
• Zp can be written using an "infinite p-adic expansion" with no negative

powers and numbers in Qp have finite negative powers
• Example: in Q5,

...+ 52 + 5 + 1 =

∞∑
n=0

5n =
1

1− 5
= −1

4
∈ Z5

and −1/5 = ...111× 4
5

= ...444.4

• Letting Z×p denote the elements of Zp for which |x|p = 1, Q×p =
⋃
n∈Z p

nZ×p
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Adèles and Idèles

• The fields R and Qp can be put together to form what is called the ring of
Adèles
• The Adèle ring AQ is the collection of sequences x = {xp}p∈P∪{∞} for the

primes P and where for each p ∈ P, xp ∈ Qp and x∞ ∈ R with almost all
xp ∈ Zp
• The Idèle group IQ is the collection of Adèles for which almost all xp ∈ Z×p

and forms a group under componentwise multiplication
• We can also introduce a topology on IQ with open sets being the product of

open sets in R× and Q×p , making IQ is a locally compact abelian group, a
Haar measure, µ, can be formed for it
• Introduce the volume function ‖x‖ := |x∞| ×

∏
p∈P |xp|p and the function

ϕ(x) := exp(−π|x∞|2)
∏

1Zp(xp) and consider the integral∫
IQ
ϕ(x)‖x‖sdµ(x)
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The ξ Function Revisited

The integral can be split into the real and p-adic components to obtain

ξ(s) =

(∫
R×

e−π|t|
2

|t|s dt
t

)
×

(∏
p

∫
Z×
p

|xp|spdµ×p (xp)

)
.

The first integral turns out to be Γ
(
s
2

)
π−s/2 and the latter ones are 1

1−p−s which
combine to form ζ(s). So the integral coincides with the ξ(s) introduced before:

ξ(s) = Γ
( s

2

)
ζ(s)π−s/2.
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The ξ Function Revisited

• The integral can also be evaluated in a different way using the fact that Q×
naturally embeds into IQ with constant sequences to form the group of
principal idèles
• Taking the integral by considering equivalences classes, x̄, of IQ over the

principal idèles, it can be shown that

ξ(s) =

∫
‖x̄‖>1

(‖x̄‖s + ‖x̄‖1−s)(Θ(x̄)− 1)dµ̄(x̄)

+

∫
‖x̄‖>1

(‖x̄‖1−s − ‖x̄‖−s)dµ̄(x̄)

for the Jacobi theta function

Θ(x̄) = 1 + 2
∞∑
n=1

e−πn
2‖x̄‖2

which gives ξ(s) = ξ(1− s) by using the Poisson summation formula.
• The Poisson identity translates into Fourier analysis on IQ.
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Factorization of ζ(s)

• We find that this function is asymptotically related to Γ by

ξ(s) ∼ Γ
( s

2

)
as s→ +∞.
• Using the Hadamard Factorization Theorem, we obtain

ξ(s) =
eas+b

s(1− s)
∏
ρ

(
1− s

ρ

)
es/ρ.

• Hence

ζ(s) =
eA+Ds

s− 1

∏
ρ

(
1− s

ρ

)
es/ρ

∞∏
n=1

(
1 +

s

2n

)
e−s/(2n).
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Explicit Formula for Primes

Theorem

For x > 0, not equal to an integer,∫ x

0

ψ(y)

y
dy =

1

2πi

∫ 2+i∞

2−i∞
−
ζ′

ζ
(s)

xs

s2
ds

Substituting in

ζ′

ζ
(s) = D − 1

s− 1
+
∑
p

(
1

s− ρ +
1

ρ

)
+

∞∑
n=1

(
1

s+ 2n
− 1

2n

)
,

calculating the integrals using the residue theorem, We finally get the explicit
formula for primes:∫ x

0

ψ(y)

y
dy = x− (D + 2) log x−

∑
ρ

xρ

ρ2
+

(
π2

24
+
∑
ρ

1

ρ2

)
−
∞∑
n=1

x−2n

4n2
.
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Prime Number Theorem

Theorem (de la Valleé Poussin, Hadamard, 1896)

No zero of ζ(s) has real part 1.

Proof.

Taking the logarithm of the Euler product representation of ζ(s), we get

log |ζ(σ + it)| = −Re
∑
p

log(1− p−(σ+it)) =
∑
p

∞∑
n=1

1

npnσ
cos(nt log p)

So

3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)| =
∑
p

∞∑
n=1

1

npnσ
2(cos(nt log p) + 1)2 ≥ 0

Thus,
|ζ(σ)|3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1, σ > 1.

So if 1 + it is a zero of ζ(s), then letting σ ↓ 1, we arrive at a contradiction.
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Zero-Free Region

Thus, all ρ lie in the strip 0 < Re(ρ) < 1. So there is a continuous non-increasing
function h : [0,∞)→ (0, 1), such that ζ(s) is zero-free in the region σ < h(t).

We use this fact to bound ∣∣∣∣∣∑
ρ

xρ

ρ2

∣∣∣∣∣ = o(x)

Thus, ∫ x

0

ψ(y)

y
dy = x+ o(x),

which is equivalent to the prime number theorem.
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Prime Number Theorem with Error Term

The more we increase the bounds on the zero-free region, the better our
precision of our estimate will be.

Theorem (de la Vallée Poussin, 1898)

There is a constant A > 0 such that ζ(s) has no zero in the region

σ < 1−
A

log(2 + t)
, t ≥ 0.

We use this to bound ψ(y) and use the relations between the Chebychev
functions to π(x) to get

π(x) = Li(x) +O(xe−c
√

log x)

which is the prime number theorem with error term.
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