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Abstract—Fully homomorphic encryption opens up the pos-
sibility of secure computation on private data. However, fully
homomorphic encryption is limited by its speed and the fact that
arbitrary computations must be represented by combinations of
primitive operations, such as addition, multiplication, and binary
gates. Integrating FHE into the MLIR compiler infrastructure
allows it to be automatically optimized at many different levels
and will allow any program which compiles into MLIR to be
modified to be encrypted by simply passing another flag into the
compiler. The process of compiling into an intermediate represen-
tation and dynamically generating the encrypted program, rather
than calling functions from a library, also allows for optimizations
across multiple operations, such as rewriting a DAG of operations
to run faster and removing unnecessary operations.

I. INTRODUCTION

As the world has become increasingly digitized, concerns
for privacy have also risen. Computation on sensitive data such
as medical records, messages, and locations is being deferred
to companies with large amounts of computing power and
proprietary algorithms, and therefore, the need for security
parallels the ever-increasing need for computation in fields
like genomics, health care, and national security [2].

For example, consider a hospital which would like to submit
the records of its patients to a third-party organization to
analyze its patients for common risk factors for a certain
disease. Due to legal restrictions about the release of health
records, as well as ethical concerns regarding the privacy of its
patients, such an analysis may be difficult or even impossible
to request.

A. Homomorphic Encryption

Homomorphic encryption is a type of asymmetric encryp-
tion in which secure computations can be performed on
unknown data. In other words, an algorithm can be run on
encrypted data, and can produce an encrypted result. Consider
the following example: Suppose that a sender has a private
message µ and they wish to know the result of a function
f (x) which only the receiver can compute. The sender may
or may not know f. First, the sender creates a secret key sk
and a public key pk. They then use an encryption function
Encrypt (pk, µ)→ ψ to encrypt their message µ. The receiver
receives ψ and performs an encrypted computation F (ψ),
where F is an encrypted analogue of f. They send this back
to the sender, who decrypts F (ψ) to f (µ) (a homomorphic

encryption scheme is one where, by definition, F (ψ) = f (µ)).
So, although the receiver did the computation, neither the
message nor the result was revealed to them.

There are four kinds of homomorphic encryption: partially
homomorphic, somewhat homomorphic, leveled fully homo-
morphic, and fully homomorphic encryption [1]. In partially
homomorphic encryption, the set of possible f is limited
by the set of possible primitives: some schemes only allow
addition, while others only allow multiplication. In somewhat
homomorphic encryption (SWHE), the set of possible f is
limited by the number of operations: only small circuits can
be evaluated. Leveled fully homomorphic encryption is similar
to SWHE, except that circuits with a bounded depth can
be evaluated, instead of just small circuits. And in fully
homomorphic encryption, or FHE, any arbitrary function f
has an encrypted analogue F [18]. Somewhat homomorphic
encryption, leveled fully homomorphic encryption, and homo-
morphic encryption, can all be proven complete as long as
either addition and multiplication are both homomorphic, or
there exists an encrypted NAND gate, while they differ in their
guarantees on the increase of error after several computations
[1]. It should be noted that a leveled fully homomorphic
scheme can be transformed into a FHE scheme using a process
known as bootstrapping [8].

(Leveled) fully homomorphic encryption aims to solve the
problem of arbitrary computation by an un-trusted party on
private data. The sender knows the original message and the
result, while the receiver (who performs the computation)
knows neither.

B. Related Work: Existing FHE Libraries

Currently, there exist many (leveled) fully homomorphic
encryption schemes which rely on the hardness of the learning-
with-errors problem (LWE) [17] or its ring variant RLWE [14].
Popular schemes include the Brakerski-Gentry-Vaikuntanathan
(BGV) [3], Fan-Vercauten (B/FV) [7], the Residue Number
System (RNS) variant of B/FV [10], and Cheon-Kim-Kim-
Song (CKKS) [5] schemes. A less popular scheme is the
Gentry-Sahai-Waters (GSW) scheme, which requires that its
message is encoded in binary [8].

There also exist many implementations of these schemes,
including Microsoft SEAL [4], PALISADE [15], HElib [11],
and TFHE [6]. These libraries all expose a similar set of



Example 1: Common Subexpression Elimination (CSE) - a
high-level optimization

int func(int a, int b, int c, int d) {
int e = a * b + c;
int f = a * b * d;
return (e + f);

}

int fast_func(int a, int b, int c, int d) {
int ab = a * b;
int e = ab + c;
int f = ab * d;
return e + f;

}

Example 2: Loop Tiling - a low-level optimization
int sum_loops(int *arr) {

int sum = 0;
for (int i = 0; i < 128; i++) {

for (int j = 0; j < 128; j++) {
sum += arr[i][j];

}
}
return sum

}

int fast_sum_loops(int *arr) {
int sum = 0;
for (int i = 0; i < 128; i += 16) {

for (int j = 0; j < 128; j += 16) {
for (int k = i; k < 16; k++) {

for (int l = j; l < 16; l++) {
sum += arr[k][l];

}
}

}
}
return sum

}

Fig. 1. A few of the optimizations that can be performed by MLIR,
represented using C code. In reality, these optimizations happen on code in
the MLIR intermediate representation. See Figure 4 for an actual example
written in MLIR.

functions to the user: typically one function per primitive (such
as addition or multiplication) [18]. One library which takes a
different approach is CrypTen [9], which exposes encrypted
tensor operations using secure multiparty computation.

The main tradeoff in homomorphic encryption (especially
FHE) is decreased speed and increased memory usage in
exchange for increased security. A single encrypted bit takes
several kilobytes to store, and a single homomorphic AND
gate takes multiple milliseconds to compute, compared to
a single clock cycle for a native AND gate. Conventional
wisdom states that fully homomorphic encryption will al-
ways be dramatically slower as a result of the overhead
necessary to ensure secure computation. Diving in deeper,
however, a significant part of this overhead can be explained
by the inability of current tools to optimize homomorphic
programs. For example, many common optimizations like
common subexpression elimination and loop tiling (see Figure
1) cannot be performed by a regular FHE library on encrypted
programs, but they can be performed by MLIR [13] and other
compilers on regular programs. In fact, there are four main

limitations of current FHE libraries:
1) They can only perform a limited set of cross-operation

optimizations. All current FHE libraries provide a set
of homomorphic primitives, such as Add (x, y, params)
and Multiply (x, y, params) (or their respective operator
overloads) [4] [15] [11], or in the case of GSW and its
variants, NOT (x, params), AND (x, y, params), and
the rest of the binary gates [6]. And each operation
is separately optimized. But these libraries cannot look
across multiple operations to remove or simplify inter-
mediate instructions, for the most part.

2) They cannot perform rewrites and other high-level opti-
mizations, in which, for example, NAND (x, x, params)
is replaced with the much faster NOT (x, params) or
Multiply (x, 1, params) is replaced with x.

3) They do not perform low-level optimizations such as
loop nest optimization and loop scheduling.

4) They are not modular. If a user wants to use a different
encryption scheme, they must rewrite their code, or even
switch to a different library. Additionally, there is no
modularity in programming languages (most of them
must be accessed in C++, although SEAL can be used
in C++, C#/F#, Python, and JavaScript). And finally,
there is no modularity in optimizations. The user cannot
choose which optimizations to apply and which ones to
avoid based on their own circumstances.

C. Our Contribution

In order to overcome all of these limitations, we present
SyFER-MLIR, a Synthesizer of Fast Encrypted Routines,
which uses the MLIR compiler framework to generate en-
crypted programs. The previous version of SyFER interfaced
with Halide [16] to perform cross-operation optimizations and
rewrites on the GSW scheme, and the current version uses
MLIR to vastly increase low-level optimizations, modularity
at every level, and ease of use.

With SyFER-MLIR, instead of having to manually translate
a plaintext function f into an encrypted function F with the
help of a library, the function f is kept as-is, written in
(a subset of) any language that compiles to MLIR, such
as C, C++, Fortran, or TensorFlow. When it is compiled
by MLIR, it is automatically translated into an intermediate
representation known as the Standard Dialect. A subset of the
Standard Dialect is then automatically translated into any one
of a number of FHE dialects (currently, GSW and B/FV are
implemented). Cross-operation optimizations and rewrites are
applied, after which point the result is passed back into MLIR,
optimized further at the low-level, and then passed into LLVM
for the lowest-level optimizations [12].

Unlike current FHE libraries, SyFER-MLIR reads in an
entire, arbitrary program, and encrypts it all at once. The
program can be compiled to any one of a number of targets,
such as serial code, CPU parallel code, and GPU parallel
code in any architecture supported by LLVM. The specific
optimizations performed and omitted by SyFER-MLIR can be
tweaked by the user in the command line, so that different sets



of optimizations can be performed for different programs and
specific machines and use cases, all without actually modifying
a single line of code. The specific parameters of the FHE
scheme with which they will need their program to work can
also be directly modified in the command line, without any
modifications to the program itself.

II. OPTIMIZATIONS

A. MLIR and Progressive Lowering

MLIR, and consequently, SyFER-MLIR, can perform cross-
operation optimizations, high-level optimizations, and low-
level optimizations using a process called progressive lower-
ing [13]. In a traditional compiler, a programming language
is translated directly into low-level instructions. However,
modern compilers use several intermediate representations to
perform optimizations at different levels of abstraction. At
each lowering step, a higher-level IR is optimized and then
converted into a slightly lower-level IR. MLIR allows this
process to be easily modified and extended with its concept
of dialects. The dialects all have very similar syntax, which
allows different dialects to be processed with the same tool
(MLIR) and easily converted from one into another. However,
the dialects have very different operations, with some dialects
dealing with high-level matrix and tensor math, while other
dialects deal with low-level loop optimizations. The operations
themselves are completely opaque to MLIR, and are converted
from one dialect to another using lowering rules which are
defined separately. Dialects can also be mixed within the
same MLIR file, which allows, for example, the GSW dialect
to lower to a mix of LinAlg, Affine, SCF, and Standard
dialects in just two steps. The only requirement is that the
complexity of the code should be monotonically decreasing
between successive lowering steps.

By creating a dialect for a FHE scheme instead of writing
a library, we can take advantage of progressive lowering
to automatically generate low-level instructions like addition
and multiplication from a complicated program. Then, these
instructions are automatically converted into their encrypted
analogues using custom lowering rules. Finally, the encrypted
analogues are lowered back into executable instructions like
normal.

Several lowering passes are needed to fully lower a FHE
dialect into LLVM IR. Figure 2 is a simplified diagram
showing all the dialects which a snippet of code travels through
when being lowered through SyFER-MLIR into LLVM-IR
code. The dialects are colored according to their complexity,
with more complex dialects appearing on the red side of the
spectrum while less complex dialects are on the blue side.
Figure 3 shows the complete set of passes needed to lower the
GSW and B/FV dialects without any optimizations. If further
optimizations are needed, an optimization pass can be added
between any two lowering passes in the pipeline. Note that
the first lowering pass in both the GSW and B/FV pipelines
converts each dialect into a “simple” version of itself, lowering
complicated GSW operations into simple GSW operations, and
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Fig. 2. Simplified diagram of progressive lowering of code through the
regular, GSW, and B/FV pipelines. Note that different dialects are often
present within the same file, which is not illustrated. GPU scheduling and
further loop optimizations are possible but not illustrated.
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Fig. 3. Diagram of progressive lowering from the GSW and B/FV dialects into
LLVM-IR. On the GSW side, there are three passes: GSW to Simple GSW
(GSW dialect → mix of Simple GSW, LinAlg, Standard), Simple GSW to
Loops (Simple GSW → Affine, SCF, Standard), and Linalg to LLVM (Linalg,
Affine, SCF, and Standard → LLVM). On the B/FV side, there are five passes:
BFV to Simple BFV (BFV → Simple BFV, Standard), Simple BFV to Loops
(Simple BFV → Affine, SCF, Standard), Lower Affine (Affine → Standard),
Loops to Standard (SCF → Standard), and Standard to LLVM (Standard →
LLVM). Each set of arrows of the same color represents a pass, with earlier
passes appearing on the red side of the spectrum and later passes appearing
on the blue side.

similarly for B/FV. The simple dialects are then lowered into
other dialects.

B. Circuit Graph Rewrites

Every encrypted function in a FHE scheme can be rep-
resented as a directed acyclic graph (DAG) of primitives in
which each node is a primitive and each edge represents
the output of one primitive being passed in as the input of
another. In the case of the GSW scheme, these primitives are
binary gates, and in the case of other schemes like B/FV, these
primitives are addition and multiplication.

Rewrites allow us to replace more time-consuming op-
erations with semantically equivalent faster operations. As
previously mentioned, in the GSW scheme, a homomorphic
NOT gate is much faster than a homomorphic NAND gate, so
we can define a rewrite rule to replace NAND (x, x, params)
with NOT (x, params). We can also aggressively eliminate
dead code within individual circuits like encrypted adders.



Such optimizations would be impossible with a standard FHE
library.

In addition to these simple rewrites, there are also more
complicated rewrites generated by SyFER using techniques
like trimming, removing constants, collapsing NOT chains,
and optimizing 2-input and 3-input subgraphs. These optimiza-
tions can also be performed in SyFER-MLIR using the DAG
Rewriter Infrastructure.

C. Cross-Operation Optimizations

Cross-operation optimizations allow us to remove unnec-
essary or canceling lower-level instructions which span mul-
tiple operations. For example, in the B/FV scheme (whose
ciphertexts are members of an anticyclic polynomial ring), two
INTT’s added together can be replaced by a single INTT after
the addition. Example pseudocode (a, b, d, and e are poly-
nomials initially in coefficient form, + represents polynomial
addition, and · represents element-wise multiplication).

Algorithm 1 sum of two products of polynomials (unopti-
mized)

1: a← NTT (a)
2: b← NTT (b)
3: c← a · b
4: c← INTT (c)
5: d← NTT (d)
6: e← NTT (e)
7: f ← d · e
8: f ← INTT (f)
9: g ← c+ f

10: return g

can be optimized to

Algorithm 2 sum of two products of polynomials (optimized)
1: a← NTT (a)
2: b← NTT (b)
3: c← a · b
4: d← NTT (d)
5: e← NTT (e)
6: f ← d · e
7: g ← c+ f
8: g ← INTT (g)
9: return g

In practice, the INTT’s, element-wise multiplications, and
polynomial additions are part of the “simple BFV” dialect,
and would have been lowered from multiple “complicated
BFV operations”. Such optimizations could occur across
multiple original operations. Libraries like Microsoft SEAL
and PALISADE can perform this particular optimization by
keeping track of the state of each polynomial (whether it is in
coefficient form or NTT form), but MLIR provides a general
solution for all possible cross-operation optimizations.

Memory deallocation of every matrix (in the GSW scheme)
and polynomial (in the B/FV scheme) can also be optimized

Unoptimized:
#map0 = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<() -> (0)>
#map2 = affine_map<()[s0] -> (s0)>

module {
func @main() {
%c0_i64 = constant 0 : i64
%c128 = constant 128 : index
%0 = alloc(%c128, %c128) : memref<?x?xi64>
affine.for %arg0 = 0 to %c128 {
affine.for %arg1 = 0 to %c128 {
affine.store %c0_i64, %0[%arg0, %arg1] : memref<?x?xi64>

}
}
return

}
}

Optimized:
#map0 = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0) -> (d0)>
#map2 = affine_map<(d0) -> (d0 + 16)>
#map3 = affine_map<() -> (0)>
#map4 = affine_map<()[s0] -> (s0)>

module {
func @main() {
%c0_i64 = constant 0 : i64
%c128 = constant 128 : index
%0 = alloc(%c128, %c128) : memref<?x?xi64>
affine.for %arg0 = 0 to %c128 step 16 {
affine.for %arg1 = 0 to %c128 step 16 {
affine.for %arg2 = #map1(%arg0) to #map2(%arg0) {
affine.for %arg3 = #map1(%arg1) to #map2(%arg1) {
affine.store %c0_i64, %0[%arg2, %arg3] : memref<?x?xi64>

}
}

}
}
return

}
}

Fig. 4. Example of MLIR’s affine loop tiling optimization

to occur at precisely optimal times across multiple original
operations using MLIR’s buffer placement feature.

D. Low-Level Optimizations

After lowering through an FHE dialect, the resulting code
is further optimized by MLIR by passing through various
dialects like linalg (linear algebra) and affine (affine loops
and expressions). These dialects can further optimize the the
loops by doing low-level scheduling optimizations like loop
tiling and unrolling (see Figure 4). There are also optional
passes to parallelize and/or GPU-schedule the loops. Along
with the benefit of modularity of optimizations, this approach
also decouples algorithm definition from execution strategy,
an idea which proved successful in Halide [16] in terms of
optimization and ease of use.

III. RESULTS

We modified MLIR to include dialects for the GSW and
B/FV schemes, as well as custom lowerings and optimiza-
tions. We wrote lowering passes to and from the two FHE
dialects and fully integrated them into the MLIR compiler
infrastructure. A piece of code already lowered into the MLIR



Standard Dialect can be lowered through the GSW or B/FV
schemes completely into the LLVM dialect by using the passes
mentioned in the caption to Figure 3.

IV. CONCLUSION AND FUTURE WORK

We created SyFER-MLIR, an extensible, modular, optimiz-
ing compiler for encrypted programs. SyFER-MLIR automat-
ically generates homomorphically encrypted code from any
language which compiles to MLIR to any target architecture
supported by LLVM. Currently, the GSW and B/FV schemes
are supported. There are still many improvements to be made,
such as the introduction of more FHE schemes like the CKKS,
BGV, and the RNS variant of B/FV. More optimization passes
can be written within the GSW and B/FV dialects themselves.
Additionally, conversions can be written from more exist-
ing dialects into the FHE dialects to optimize the lowering
process. Finally, SyFER-MLIR could be modified to support
parallelization / multithreading to significantly increase its
performance.
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