Surfaces in Knot Theory

By: Ben Ratin

Primes Circle

Background

My name is Ben Ratin.

I am a rising Junior at Newton North High School.

My interests include Mathematics and several Sciences including Physics and Chemistry.

My mentor was Kenneth Kox

Background

- Presenting: the Knot Theory and how it relates to Surfaces around us
- We can use Knot Theory to understand surfaces around us
- Did you know that a Sphere is the same as a Cube?!

Brief Knot Theory Intro

- Knot Theory: Branch of Topology
 - Study of Mathematical Knots
- Mathematical knot: shoelace analogy!

Examples of Mathematical Knots

Unknot

Trefoil Knot

Knots: Theory and Terms

Knot: Infinitely thin line that has it's two ends connected

Unknot: Practically a circle. It is a knot with no crossings in it, the most basic form of a knot

Trefoil Knot: One of the most common knots, one with the lowest number of crossings

Surfaces and Non-Surfaces

Surface: Outside-most part of a three dimensional object

Examples of a **non surfaces**: Line or a Torus that is pinched infinitely thin

Surfaces Without Boundary

A surface without boundary is just a regular surface.

Examples of a surface without boundary: Sphere, Torus, and Cube

Surfaces With Boundary

A simple way of creating a boundary in a surface is by cutting a disk in it. Now the boundary of the surface is the empty space created by the disk.

Boundary Component: the missing circle.

Example of a Surface with boundary:

Surfaces Relating To Knot Theory

- Every knot can be encapsulated in a torus
 - Just take an infinitely thin knot and make a tube around it

- Knots can even be encapsulated in a Sphere
 - The sphere is a complement of a knot = everything but the knot!

Surfaces: Euler Characteristic

Euler Characteristic: A number that describes a three dimensional object's shape or structure regardless of how it is oriented or disfigured.

Leonhard Euler (1707-1783)

Euler Characteristic = **V**ertices - **E**dges + **F**aces

Tetrahedron

$$4 - 6 + 4 = 2$$

<u>Cube</u>

$$8 - 12 + 6 = 2$$

Octahedron

$$6 - 12 + 8 = 2$$

Surfaces: Isotopy

Isotopy: Two surfaces are *isotopic* when they are equivalent under rubber deformation

Look at this: a sphere and cube are mathematically the same!

Surfaces: Genus

Genus: Number of through holes that an orientable surface has.

Examples of Orientable surfaces and their genera

Torus: Genus = 1

Double torus: Genus = 2

Sphere: Genus = 0

*Euler Characteristic = 2 - 2 * Genus*

Surfaces: Homeomorphism

Homeomorphic Surfaces: cut, change in any way, glue back exactly where it was connected before.

Unknot surface can be cut and weaved to look like a trefoil knot surface:

Homeomorphic does not mean "the same"!

Summary: What We Learned

- Knot Theory: fascinating subject in topology
 - A little hard to find resources on it ... but there are a lot of things you can do with it!
 - Can help in understanding of Biology, Chemistry and Physics
- Surfaces are found all around us
 - Some things are not intuitive: a Sphere and a Cube are the same thing!

Thank You

Mentor Kenneth Kox

Primes Circle

MIT

Parents

Thank You!

Questions?

Sources

Adams, Colin C. The Knot Book.

Wikipedia. en.wikipedia.org/wiki/Euler_characteristic.

https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spaces-the-torus/

http://www.toroidalsnark.net/torsn.html

http://www.aljanh.net/cube-wallpapers/2002447130.html