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Graphs and Homomorphisms
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What is a graph?

A graph X is a collection of vertices (dots) and edges (line segments or
arrows).

Notation:
e V/(X): the set of vertices.
e E(X): the set of edges.
e u~ v: edge {u,v} € E(X).
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Graph Homomorphisms

Definition

Let X and Y be graphs. A map ¢ : V(X) — V(Y) is a homomorphism if
©(x) ~ ¢(y) whenever x ~ y. Less formally, a homomorphism maps edges

to edges.

Example
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Let / be an subset of the vertex set V(G) of a graph. We say that / is an
independent set if there exists no edge that joins two vertices in /.

Definition

For a positive integer ¢, a c-coloring of a graph G is a partition of V(G)
into ¢ independent sets. The chromatic number of a graph, x(G), is the
smallest integer n such that G has a n-coloring.

We can think of a c-coloring of G as a homomorphism G — K. that
identifies each independent set with a distinct vertex of K.
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Hedetniemi's Conjecture

@ Y: X — Y exists, = x(X) < x(Y), because there is
m: Y = K(y), and o ¢ is a homomorphism X — K, (y).

@ Since the map that sends (x, y) to x is a homomorphism
XxY =X = x(XxY)<min{x(X), x(Y)}.

Conjecture (Hedetniemi, 1966)

For all graphs X, Y, we have x(X x Y) = min{x(X), x(Y)}
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Figure: Ky x K3 =
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Shitov's counterexample (2019)

Main ldea:

@ Shitov proves that if G contains a large cycle but no short ones,

X(ec(GXWKq)) > ¢ (1)
where ¢ = [3.1- q].
@ Can also show:
MEHK) > c (2)
© and yet...
X(GRKy) xec(GRKy)) =c. (3)
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Future Directions

There have been attempts to modify Hedetniemi's Conjecture, in terms of
the Poljak—Rodl function.

Definition

The Poljak—Raodl function f : N — N satisfies

f(n) = min G x H). 4
()= (e X ) “)

Hedetniemi is false = f(n) < n for some n € N.

Weak Hedetniemi Conjecture

lim f(n) = oo. (5)

n—o00
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Colorings and Cliques
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Generalizing Colorings

Standard k-coloring of a graph = a {0, 1}-valued function on independent
sets

Generalization: a nonnegative function on all independent sets of a graph.
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Fractional Colorings: Examples
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Fractional Colorings: Definitions

Let Z(X) denote the set of all independent sets of a graph X, and let
Z(X, u) denote all the independent sets that also contain the vertex wv.

Definition

A fractional coloring of a graph X is a function f : Z(X) — Rx>q such that
for all vertices x € X, > ser(x ) F(S) = 1.

Definition

The weight of a fractional coloring is defined as 3 ¢c7(x) f(S). The
fractional chromatic number x*(X) of the graph X is the minimum
possible weight of a fractional coloring.
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Generalizing Cliques

Cliques (complete subgraphs) = {0, 1}-valued functions on vertices.

S
<<><e><<%<5//\<@<%/\

0 1 1 1 0 1

Generalization: sum up nonnegative functions over vertices.
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Fractional Cliques: Examples
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Fractional Cliques: Definitions

A fractional clique of a graph X is a function f : V(X) — Rx¢ such that
> vev(s) f(v) <1 for all independent sets S € Z(X).

Definition
The weight of a fractional clique is defined as 3~ c\/(x) f(v). The

fractional clique number of w*(X) of the graph X is the maximum
possible weight of a fractional clique.

| N\
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Duality

Proposition
For any graph X, we have w*(X) < x*(X).

G GGG GLDg
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Symmetry of graphs: Transitivity
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Graph Automorphisms

Definition
A graph automorphism is a permutation of the vertices that takes edges to
edges and nonedges to nonedges. They form a group, Aut(X).

V.

Example

@
—0B—~®

@ Aut(X) = {(1), (14)(23)}
Aut(X) =S,

Proposition
A graph automorphism preserves the degree of a vertex.
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Transitivity

Aut(X) acts on the set of vertices, the set of edges, and the set of arcs
(ordered pairs of two adjacent vertices).

Definition

Given a set A on which Aut(X) acts, we say that a graph is A-transitive if
for every a, b € A, there is a graph automorphism taking a to b.

v

Example

Any cycle C, is vertex, edge, and arc transitive.
The star graph Kj 4 is edge but not arc transitive since (1,2) 4 (2,1).
The graph G, U (G is arc and edge transitive but not vertex transitive.

b o e°

GUG

A\
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s-arc Transitivity

Definition

An s-arc is a sequence (vp, vi, ..., vs) of adjacent vertices such that
Vi1 # vjy1 for all i.

Note that O-arc transitivity is the same as vertex transitivity, and 1l-arc
transitivity is the same as arc transitivity.

Example

A cycle C,, n > 3 is s-arc transitive for all s.
The star graph Kj 4 is 2-arc transitive.

e @0
s o
©® @ O

(o K14

b
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s-arc Transitive Graphs

The cube is 0-, 1-, and 2-arc transitive, but not 3-arc transitive.

Proposition
If every connected component of X contains a cycle, then

s-arc transitive => (s — 1)-arc transitive.

If X satisfies this condition and is s-transitive for some s, then X is vertex
transitive, so every vertex has the same degree.

We will consider graphs of degree at least 3.
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Restrictions on s

Theorem (Tutte, 1947)

Let X be an s-arc transitive graph of degree equal to 3. Then s <5.

Example
The Tutte-Coxeter graph achieves s = 5.

Minghan S., Andrew W., Christopher Z. Homomorphisms of Graphs June 6, 2020



Restrictions on s

Theorem (Weiss, 1981)

Let X be an s-arc transitive graph of degree at least 3. Then s < 7.
Furthermore, if s = 6 then X is 7-arc transitive.

The smallest known example of a nontrivial 7-arc transitive graph has
degree four and is on 728 vertices.
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