Homomorphisms of Graphs: Colorings, Cliques and Transitivity

Minghan Sun, Andrew Weinfeld, Christopher Zhu

MIT PRIMES
Reading Group Mentor: Younhun Kim

$$
\text { June 6, } 2020
$$

Graphs and Homomorphisms

What is a graph?

A graph X is a collection of vertices (dots) and edges (line segments or arrows).

Notation:

- $V(X)$: the set of vertices.
- $E(X)$: the set of edges.
- $u \sim v$: edge $\{u, v\} \in E(X)$.

Graph Homomorphisms

Definition

Let X and Y be graphs. A map $\varphi: V(X) \rightarrow V(Y)$ is a homomorphism if $\varphi(x) \sim \varphi(y)$ whenever $x \sim y$. Less formally, a homomorphism maps edges to edges.

Example

Colorings

Definition

Let I be an subset of the vertex set $V(G)$ of a graph. We say that I is an independent set if there exists no edge that joins two vertices in I.

Definition

For a positive integer c, a c-coloring of a graph G is a partition of $V(G)$ into c independent sets. The chromatic number of a graph, $\chi(G)$, is the smallest integer n such that G has a n-coloring.

We can think of a c-coloring of G as a homomorphism $G \rightarrow K_{c}$ that identifies each independent set with a distinct vertex of K_{c}.

Hedetniemi's Conjecture

- $\psi: X \rightarrow Y$ exists, $\Longrightarrow \chi(X) \leq \chi(Y)$, because there is $\pi: Y \rightarrow K_{\chi(Y)}$, and $\pi \circ \psi$ is a homomorphism $X \rightarrow K_{\chi(Y)}$.
- Since the map that sends (x, y) to x is a homomorphism $X \times Y \rightarrow X \Longrightarrow \chi(X \times Y) \leq \min \{\chi(X), \chi(Y)\}$.

Conjecture (Hedetniemi, 1966)

For all graphs X, Y, we have $\chi(X \times Y)=\min \{\chi(X), \chi(Y)\}$.

Figure: $K_{2} \times K_{3} \cong C_{6}$

Shitov's counterexample (2019)

Main Idea:

(1) Shitov proves that if G contains a large cycle but no short ones,

$$
\begin{equation*}
\chi\left(\varepsilon_{c}\left(G \boxtimes K_{q}\right)\right)>c \tag{1}
\end{equation*}
$$

where $c=\lceil 3.1 \cdot q\rceil$.
(2) Can also show:

$$
\begin{equation*}
\chi\left(G \boxtimes K_{q}\right)>c \tag{2}
\end{equation*}
$$

(3) and yet...

$$
\begin{equation*}
\chi\left(\left(G \boxtimes K_{q}\right) \times \varepsilon_{c}\left(G \boxtimes K_{q}\right)\right)=c . \tag{3}
\end{equation*}
$$

Future Directions

There have been attempts to modify Hedetniemi's Conjecture, in terms of the Poljak-Rödl function.

Definition

The Poljak-Rödl function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies

$$
\begin{equation*}
f(n)=\min _{\chi(G), \chi(H) \geq n} \chi(G \times H) \tag{4}
\end{equation*}
$$

Hedetniemi is false $\Longrightarrow f(n)<n$ for some $n \in \mathbb{N}$.

Weak Hedetniemi Conjecture

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f(n)=\infty \tag{5}
\end{equation*}
$$

Colorings and Cliques

Generalizing Colorings

Standard k-coloring of a graph $=\mathrm{a}\{0,1\}$-valued function on independent sets

Generalization: a nonnegative function on all independent sets of a graph.

Fractional Colorings: Examples

\leftrightarrow
(0,

0 ,

0 ,

0 ,

0,

1 ,

1)

(0,

0.5 ,

0 ,
0 ,
0.5 ,

0.5 ,

1)

Fractional Colorings: Definitions

Let $\mathcal{I}(X)$ denote the set of all independent sets of a graph X, and let $\mathcal{I}(X, u)$ denote all the independent sets that also contain the vertex u.

Definition

A fractional coloring of a graph X is a function $f: \mathcal{I}(X) \rightarrow \mathbb{R}_{\geq 0}$ such that for all vertices $x \in X, \sum_{S \in \mathcal{I}(X, x)} f(S) \geq 1$.

Definition

The weight of a fractional coloring is defined as $\sum_{S \in \mathcal{I}(X)} f(S)$. The fractional chromatic number $\chi^{*}(X)$ of the graph X is the minimum possible weight of a fractional coloring.

Generalizing Cliques

Cliques (complete subgraphs) $=\{0,1\}$-valued functions on vertices.

0

1

1

1

0

1

1

1

Generalization: sum up nonnegative functions over vertices.

Fractional Cliques: Examples

Fractional Cliques: Definitions

Definition

A fractional clique of a graph X is a function $f: V(X) \rightarrow \mathbb{R}_{\geq 0}$ such that $\sum_{v \in V(S)} f(v) \leq 1$ for all independent sets $S \in \mathcal{I}(X)$.

Definition

The weight of a fractional clique is defined as $\sum_{v \in V(X)} f(v)$. The fractional clique number of $\omega^{*}(X)$ of the graph X is the maximum possible weight of a fractional clique.

Duality

Proposition

For any graph X, we have $\omega^{*}(X) \leq \chi^{*}(X)$.

(0,
0.5 ,
0.5,

0.5 ,
0.5 , 1)

Symmetry of graphs: Transitivity

Graph Automorphisms

Definition

A graph automorphism is a permutation of the vertices that takes edges to edges and nonedges to nonedges. They form a group, Aut (X).

Example

Proposition

A graph automorphism preserves the degree of a vertex.

Transitivity

Aut (X) acts on the set of vertices, the set of edges, and the set of arcs (ordered pairs of two adjacent vertices).

Definition

Given a set A on which $\operatorname{Aut}(X)$ acts, we say that a graph is A-transitive if for every $a, b \in A$, there is a graph automorphism taking a to b.

Example

Any cycle C_{n} is vertex, edge, and arc transitive.
The star graph $K_{1,4}$ is edge but not arc transitive since $(1,2) \nrightarrow(2,1)$. The graph $C_{2} \cup C_{1}$ is arc and edge transitive but not vertex transitive.

C_{4}

$K_{1,4}$

$C_{2} \cup C_{1}$

s-arc Transitivity

Definition

An s-arc is a sequence $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of adjacent vertices such that $v_{i-1} \neq v_{i+1}$ for all i.

Note that 0 -arc transitivity is the same as vertex transitivity, and 1 -arc transitivity is the same as arc transitivity.

Example

A cycle $C_{n}, n \geq 3$ is s-arc transitive for all s.
The star graph $K_{1,4}$ is 2-arc transitive.

s-arc Transitive Graphs

Example

The cube is $0-, 1$-, and 2 -arc transitive, but not 3 -arc transitive.

Proposition

If every connected component of X contains a cycle, then

$$
s \text {-arc transitive } \Longrightarrow(s-1) \text {-arc transitive. }
$$

If X satisfies this condition and is s-transitive for some s, then X is vertex transitive, so every vertex has the same degree.

We will consider graphs of degree at least 3 .

Restrictions on s

Theorem (Tutte, 1947)

Let X be an s-arc transitive graph of degree equal to 3 . Then $s \leq 5$.

Example

The Tutte-Coxeter graph achieves $s=5$.

Restrictions on s

Theorem (Weiss, 1981)

Let X be an s-arc transitive graph of degree at least 3 . Then $s \leq 7$. Furthermore, if $s=6$ then X is 7 -arc transitive.

Example

The smallest known example of a nontrivial 7-arc transitive graph has degree four and is on 728 vertices.

Thank you

We would like to thank:

- Younhun Kim
- Dr. Slava Gerovitch
- Prof. Pavel Etingof
- The MIT PRIMES program

References

（R．Erdös．＂Graph Theory and Probability＂．In：Canadian Journal of Mathematics 11 （1959），pp．34－38．DOI：10．4153／CJM－1959－003－9．
Chris Godsil and Gordon F Royle．Algebraic graph theory．Vol． 207. Springer Science \＆Business Media， 2013.
嗇 Yaroslav Shitov．Counterexamples to Hedetniemi＇s conjecture． 2019. arXiv： 1905.02167 ［math．CO］．
國 Richard Weiss．＂The nonexistence of 8－transitive graphs＂．In： Combinatorica 1.3 （1981），pp．309－311．
求 Mohamed M．El－Zahar and Norbert Sauer．＂The chromatic number of the product of two 4－chromatic graphs is 4＂．In：Combinatorica 5 （1985），pp．121－126．
國 Hui Zhou．＂A graph theoretic characterization of the classical generalized hexagon on 364 vertices＂．In：arXiv preprint arXiv：1810．07442（2018）．

