Homomorphisms of Graphs: Colorings, Cliques and Transitivity

Minghan Sun, Andrew Weinfeld, Christopher Zhu

MIT PRIMES Reading Group Mentor: Younhun Kim

June 6, 2020

Graphs and Homomorphisms

A graph X is a collection of vertices (dots) and edges (line segments or arrows).

Notation:

- V(X): the set of vertices.
- E(X): the set of edges.
- $u \sim v$: edge $\{u, v\} \in E(X)$.

Definition

Let X and Y be graphs. A map $\varphi : V(X) \to V(Y)$ is a homomorphism if $\varphi(x) \sim \varphi(y)$ whenever $x \sim y$. Less formally, a homomorphism maps edges to edges.

Definition

Let I be an subset of the vertex set V(G) of a graph. We say that I is an independent set if there exists no edge that joins two vertices in I.

Definition

For a positive integer c, a c-coloring of a graph G is a partition of V(G) into c independent sets. The chromatic number of a graph, $\chi(G)$, is the smallest integer n such that G has a n-coloring.

We can think of a *c*-coloring of *G* as a homomorphism $G \rightarrow K_c$ that identifies each independent set with a distinct vertex of K_c .

 φ :

Hedetniemi's Conjecture

- $\psi: X \to Y$ exists, $\implies \chi(X) \le \chi(Y)$, because there is $\pi: Y \to K_{\chi(Y)}$, and $\pi \circ \psi$ is a homomorphism $X \to K_{\chi(Y)}$.
- Since the map that sends (x, y) to x is a homomorphism $X \times Y \to X \implies \chi(X \times Y) \le \min{\{\chi(X), \chi(Y)\}}.$

Conjecture (Hedetniemi, 1966)

For all graphs X, Y, we have $\chi(X \times Y) = \min{\{\chi(X), \chi(Y)\}}$.

Main Idea:

Shitov proves that if G contains a large cycle but no short ones,

$$\chi(\varepsilon_c(G \boxtimes K_q)) > c \tag{1}$$

where
$$c = \lceil 3.1 \cdot q \rceil$$
.

2 Can also show:

$$\chi(\mathbf{G} \boxtimes \mathbf{K}_q) > c \tag{2}$$

3 and yet...

$$\chi((G \boxtimes K_q) \times \varepsilon_c(G \boxtimes K_q)) = c.$$
(3)

There have been attempts to modify Hedetniemi's Conjecture, in terms of the *Poljak–Rödl function*.

Definition

The Poljak–Rödl function $f : \mathbb{N} \to \mathbb{N}$ satisfies

$$f(n) = \min_{\chi(G), \chi(H) \ge n} \chi(G \times H).$$

Hedetniemi is false $\implies f(n) < n$ for some $n \in \mathbb{N}$.

Weak Hedetniemi Conjecture

$$\lim_{n\to\infty}f(n)=\infty.$$

(4)

(5

Colorings and Cliques

Generalizing Colorings

Standard k-coloring of a graph = a $\{0,1\}$ -valued function on independent sets

Generalization: a nonnegative function on *all* independent sets of a graph.

Fractional Colorings: Examples

Let $\mathcal{I}(X)$ denote the set of all independent sets of a graph X, and let $\mathcal{I}(X, u)$ denote all the independent sets that also contain the vertex u.

Definition

A fractional coloring of a graph X is a function $f : \mathcal{I}(X) \to \mathbb{R}_{\geq 0}$ such that for all vertices $x \in X$, $\sum_{S \in \mathcal{I}(X,x)} f(S) \geq 1$.

Definition

The weight of a fractional coloring is defined as $\sum_{S \in \mathcal{I}(X)} f(S)$. The fractional chromatic number $\chi^*(X)$ of the graph X is the minimum possible weight of a fractional coloring.

Cliques (complete subgraphs) = $\{0, 1\}$ -valued functions on vertices.

Generalization: sum up nonnegative functions over vertices.

Fractional Cliques: Examples

Definition

A fractional clique of a graph X is a function $f: V(X) \to \mathbb{R}_{\geq 0}$ such that $\sum_{v \in V(S)} f(v) \leq 1$ for all independent sets $S \in \mathcal{I}(X)$.

Definition

The weight of a fractional clique is defined as $\sum_{v \in V(X)} f(v)$. The fractional clique number of $\omega^*(X)$ of the graph X is the maximum possible weight of a fractional clique.

Duality

Proposition

For any graph X, we have $\omega^*(X) \leq \chi^*(X)$.

Symmetry of graphs: Transitivity

Graph Automorphisms

Definition

A graph automorphism is a permutation of the vertices that takes edges to edges and nonedges to nonedges. They form a group, Aut(X).

Example

Proposition

A graph automorphism preserves the degree of a vertex.

Minghan S., Andrew W., Christopher Z.

Homomorphisms of Graphs

Transitivity

Aut(X) acts on the set of vertices, the set of edges, and the set of arcs (ordered pairs of two adjacent vertices).

Definition

Given a set A on which Aut(X) acts, we say that a graph is A-transitive if for every $a, b \in A$, there is a graph automorphism taking a to b.

Example

Any cycle C_n is vertex, edge, and arc transitive.

The star graph $K_{1,4}$ is edge but not arc transitive since $(1,2) \not\rightarrow (2,1)$. The graph $C_2 \cup C_1$ is arc and edge transitive but not vertex transitive.

Definition

An *s*-arc is a sequence (v_0, v_1, \ldots, v_s) of adjacent vertices such that $v_{i-1} \neq v_{i+1}$ for all *i*.

Note that 0-arc transitivity is the same as vertex transitivity, and 1-arc transitivity is the same as arc transitivity.

Example

A cycle C_n , $n \ge 3$ is *s*-arc transitive for all *s*. The star graph $K_{1,4}$ is 2-arc transitive.

s-arc Transitive Graphs

Example

The cube is 0-, 1-, and 2-arc transitive, but not 3-arc transitive.

Proposition

If every connected component of X contains a cycle, then

s-arc transitive \implies (s-1)-arc transitive.

If X satisfies this condition and is s-transitive for some s, then X is vertex transitive, so every vertex has the same degree.

We will consider graphs of degree at least 3.

Minghan S., Andrew W., Christopher Z.

Theorem (Tutte, 1947)

Let X be an s-arc transitive graph of degree equal to 3. Then $s \leq 5$.

Example

The Tutte-Coxeter graph achieves s = 5.

Theorem (Weiss, 1981)

Let X be an s-arc transitive graph of degree at least 3. Then $s \le 7$. Furthermore, if s = 6 then X is 7-arc transitive.

Example

The smallest known example of a nontrivial 7-arc transitive graph has degree four and is on 728 vertices.

We would like to thank:

- Younhun Kim
- Dr. Slava Gerovitch
- Prof. Pavel Etingof
- The MIT PRIMES program

References

- P. Erdös. "Graph Theory and Probability". In: *Canadian Journal of Mathematics* 11 (1959), pp. 34–38. DOI: 10.4153/CJM-1959-003-9.
- Chris Godsil and Gordon F Royle. *Algebraic graph theory*. Vol. 207. Springer Science & Business Media, 2013.

- Yaroslav Shitov. Counterexamples to Hedetniemi's conjecture. 2019. arXiv: 1905.02167 [math.CO].
- Richard Weiss. "The nonexistence of 8-transitive graphs". In: Combinatorica 1.3 (1981), pp. 309–311.
- Mohamed M. El-Zahar and Norbert Sauer. "The chromatic number of the product of two 4-chromatic graphs is 4". In: *Combinatorica* 5 (1985), pp. 121–126.
- Hui Zhou. "A graph theoretic characterization of the classical generalized hexagon on 364 vertices". In: *arXiv preprint arXiv:1810.07442* (2018).