
Integrating Fully Homomorphic
Encryption Into the MLIR Compiler

Framework
Sanath Govindarajan

Mentor: William Moses

Run arbitrary functions on private data

Applications: medical, security, cloud computing, etc.

Fully Homomorphic Encryption

Alice (sender) Eve (untrusted receiver)

μ E(μ) E(μ)

F(E(μ))

F is an
encrypted

function that
corresponds to f

encryption

E(f(μ))f(μ)

decryption

FHE: F(E(μ)) = E(f(μ))

Pros and Cons of Fully Homomorphic Encryption
● At no point is your data known to anyone

except yourself
● At no point are your results known to

anyone except for yourself
● At no point is the computation known to

anyone except the receiver

● Theoretically, ability to translate any
existing program into an encrypted
program

● FHE libraries are unwieldy and
complicated to learn and use

● Not as widespread as other encryption
methods

● Tools for fully homomorphic encryption
(FHE) still in early stages

● Homomorphically encrypted programs
must be constructed from primitives like
binary gates, addition, and multiplication

● Very slow compared to other encryption
methods because of the need for
high-level and low-level optimizations
(scheduling etc.)

The Current State of FHE Libraries
● Currently popular libraries: SEAL, HELib, PALISADE
● FHE operations are called using library functions, one primitive at a time
● Different libraries for different schemes
● No cross-operation optimization

○ PRIMES project last year: enabled cross-operation optimization in the GSW (2013) scheme
using Halide

○ Still difficult to write complicated functions
○ Limited to bit-wise optimizations

MLIR
● A compiler, not a library
● An SSA-based Multi-Level Intermediate Representation that sits on top of the

LLVM IR
● A multi-level optimizer
● Language-independent
● Language-specific

Levels of Optimization
● Normal compiler optimizations (incl. language-specific)
● DAG rewrites (highly language- and scheme-specific)
● Loop scheduling
● Parallelization
● Overall, three levels: syntax/high level, HE level, low (scheduling) level

How Does MLIR Work?
● Opaque operations, not instructions
● Dialects: sets of operations at a similar level
● Progressive lowering: translating from a higher-level dialect to a lower-level

dialect (lowest is LLVM IR) and optimizing along the way
● Can mix and match dialects within a single MLIR module
● Example:

HE Dialect

LinAlg

Affine

Loop

Standard

Standard

LLVM IR

High Level (Input Code)

MLIR Standard Dialect

Custom FHE Dialect(s)

LLVM IR

// add x + x, unoptimized

func @add(%x : i64) -> i64 {

 %0 = addi %x, %x : i64

 return %0

}

// add x + x, optimized

// x + x = x << 1

func @add_opt(%x : i64) -> i64 {

 %cst_1 = constant 1 : i64

 %0 = shift_left %x, %cst_1 : (i64, i64) -> i64

 return %cst_1

}

Mid Level (FHE)

MLIR Standard Dialect

Custom FHE Dialect(s)

LLVM IR

// Take the NAND of a ciphertext with itself

func @self_nand(%input : memref<20x20xi128>) {

 "HE.NAND" (%input, %input, %input) {mod = 11 :

i128} : (memref<20x20xi128>, memref<20x20xi128>,

memref<20x20xi128>) -> ()

 return

}

// optimized: NAND(a, a) = NOT(a)

// removes two unnecessary operations under the hood

// (aka 1 modular matrix multiplication)

func @self_nand_opt(%input : memref<20x20xi128>) {

 "HE.NOT" (%input, %input) {mod = 11 : i128} :

(memref<20x20xi128>, memref<20x20xi128>) -> ()

 return

}

Low Level (Scheduling)

MLIR Standard Dialect

Custom FHE Dialect(s)

LLVM IR

// regular loop nest

func @regular() {

 ...

 ...

 loop.for %arg0 = %c0 to %c200 step %c1 {

 loop.for %arg1 = %c0 to %c200 step %c1 {

 loop.for %arg2 = %c0 to %c200 step %c1 {

 %3 = load %1[%arg2, %arg1] : memref<200x200xi128>

 %4 = load %0[%arg0, %arg2] : memref<200x200xi128>

 %5 = muli %4, %3 : i128

 %6 = load %2[%arg0, %arg1] : memref<200x200xi128>

 %7 = addi %6, %5 : i128

 store %7, %2[%arg0, %arg1] : memref<200x200xi128>

 }

 }

 }

 return

}

// GPU loop nest

func @gpu {

 ...

 ...

 gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %3, %arg7 = %c1_0, %arg8 = %c1_0) threads(%arg3,

%arg4, %arg5) in (%arg9 = %4, %arg10 = %c1_0, %arg11 = %c1_0) {

 %5 = addi %c0, %arg0 : index

 %6 = addi %c0, %arg3 : index

 loop.for %arg12 = %c0 to %c200 step %c1 {

 %7 = load %1[%arg12, %6] : memref<200x200xi128>

 %8 = load %0[%5, %arg12] : memref<200x200xi128>

 %9 = muli %8, %7 : i128

 %10 = load %2[%5, %6] : memref<200x200xi128>

 %11 = addi %10, %9 : i128

 store %11, %2[%5, %6] : memref<200x200xi128>

 }

 gpu.terminator

 }

 return

}

Language, Scheme, Hardware-Independent
Think about f,

not F!!

C C++ Fortran TensorFlow

GSW B/FV BGV CKKS

Serial

MLIR

CPU Parallel GPU Parallel

MLIR

Current Work & Results
● GSW (2013) and B/FV (2012) FHE schemes: custom dialects and lowering

implemented
○ Custom dialects allow for highly optimized, custom high-level operations such as

“HE.identity_minus”, “HE.flatten”, and “BFV.ntt”

● Optimizations across operations, including DAG rewrites: building off my
previous work with Walden Yan

● Language- and scheme-specific optimizations, e.g. removing redundant
flatten’s and NTT’s

Future Work
● Write dialects and lowering for more FHE schemes such as BFV RNS and

CKKS
● Implement “raising” step for all Standard dialect operations - this will allow

encryption of any arbitrary program with just one or two compiler flags
● Implement parallelization / multithreading

Conclusion
● The MLIR compiler framework can be used to easily encrypt any program in

any compatible programming language by simply passing a flag
● MLIR also provides a powerful framework for language-specific optimizations

- we can take advantage of this to speed up FHE
● The entire system is modular, allowing you to swap out the FHE scheme that

you use, the set of lowering passes, and/or the architecture that you are
targeting

Acknowledgements
● My mentor, William Moses
● My parents
● The PRIMES program and Dr. Srini Devadas

Sources
● Gentry, Sahai, and Waters (2013): https://eprint.iacr.org/2013/340.pdf
● Fan and Vercauten (2012): https://eprint.iacr.org/2012/144.pdf
● Optimizations for B/FV (2016): https://eprint.iacr.org/2016/504.pdf
● MLIR (2020): https://arxiv.org/abs/2002.11054

https://eprint.iacr.org/2013/340.pdf
https://eprint.iacr.org/2012/144.pdf
https://eprint.iacr.org/2016/504.pdf
https://arxiv.org/abs/2002.11054

Questions?

