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Motivation

* Most modern services use a distributed architecture

* We can’t debug distributed services — complicated, with 1000’s
of nodes and services

* To find performance issues in distributed systems we need to do
tracing

Debugging services in a distributed system is
a complicated problem
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Workflow-Centric Tracing

* Every request involves a workflow

* Machine-centric techniques are
insufficient
* E.g., GDB, GProf, perf. counters, strace,
Dtrace

* Workflow: Structure & timing of work
done to process them

e Structure: Order, concurrency &
synchronization

Challenge with tracing:
real-time construction
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Problem: Trace Reconstruction is Slow

* Tracking performance requires tracing services through a distributed system
* Data and computation intense

* Facebook collects 1 Billion Traces/day

* Existing tracing systems operate in mostly non-real time batch mode (e.g. Facebook ~
1 day turnaround to find problems)

* The “look-back” approach for finding anomalies or performances issues requires
archiving and analyzing massive amount of unorganized log data

Finding problems 1in distributed systems is 1like finding a needle in the haystack



Stream Processing Framework

* Tracing data is created as a series of events over time.

* In batch processing data is stored in a database. Applications would
query the data or compute over the data as needed

* Stream Processing turns this paradigm around: The application logic,
analytics, and queries exist continuously, and data flows through them
continuously.

* Upon receiving an event from the stream, a stream processing
application reacts to that event: it may trigger an action, update an
aggregate or other statistic, or “remember” that event for future
reference.
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Timely Dataflow

Dataflow

* Framework for writing dataflow programs

Connector

* Dataflow programming is a programming model in which the
computation can be represented as a directed graph: The data flows
along edges, while the computational logic in the vertices transforms it Dataflow lteration

* The messages flowing along edges are annotated with timestamps.

Timely Dataflow used as the streaming framework

Reference Naiad: A Timely Dataflow System



Previous Work

Several Non-Real Time Approaches Trees

* Google’s Dapper, Facebook’s Canopy, Brown’s X-Trace

@ Logevent [] Transaction 028 Transaction ID
ETH’s Strymon [1] is a real-time stream processing system Client Time —
* It builds on Naiad Streaming Timely Dataflow A {* ! *e : o—
* Traces are modelled as trees 4 -

. (R — - &
General infrastructure tracing frameworks (OpenTracing, X-Trace) ) 1 09 20—

* DAG can capture concurrency

represent traces as DAG (Directed Acyclic Graphs) ' l
DAG

[1] Chothia, et. Al1l, Online Reconstruction of Structural
Information from Datacenter Logs, EuroSys ’17

Strymon’s approach can be modified to incorporate DAG’s

We developed a new system for
processing traces called Altair



Proposed System For Real Time Trace Reconstruction — Altair

Altair used Timely dataflow as the stream processing framework

Input tracing event stream are reconstructed to create workflow model
which are represented as DAG

Interesting DAG’s can be stored or queried for analysis
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Evaluation: HDFS Tracing

* Mass O Cloud OpenStack i
ass Open Lloud runs Openotac Sample File Access HDFS

* Access to 10 compute instances, Altair runs on 8 instances, 2 instances DAG (part of a trace)
run Trace compression

* |nstrumented HDFS and X-Trace server

* HDFS (Hadoop Distributed File System) is distributed file system, used with
MapReduce applications in datacenters

* Performance of HDFS can directly affect the performance of jobs

* Event Test Data: 3000 Traces, ~350 graph nodes/traces, 0.525 Million
event /Epoch

* Streaming simulator to generate event stream, replay and add
anomalies, latency in event stream

Altair
implemented 1in
Rust

Acknowledgement : Mass Open Cloud for their support



Results : Altair

Number of Events Processed (Millions/sec)

Altair Events Processing Throughput
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015
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improvement to a system when
only part of the system 1in
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The Altair approach is scalable with more than 99% parallelization



Altair Use Cases

Anomaly Detection in distributed systems

Cyber Intrusion Detection

Failover Management

Performance Issues



Altair Use Case: Anomaly Detection

* Anomaly Detection application

. . ) Slow
will be run continuously in two
steps I . Event
Sampling

Streams

* The first step involves designing the
Bloom filter. The design of the Bloom
filter requires a representative set of
graphs. This step is not real-time.

* We are proposing graph clustering Update Model
approach to extract template ‘ (Bloom Filters)

representative graphs that would be Extract

programmed into Bloom Filter anomalies
* Second Step with Altair will run in real

time

Visualization « Bloom Filters

* Any anomaly traces will be flagged b .
4 / 99 ’ Performance Metrics *  Probabilistic Data stuctures

the Bloom Filter with little overhead
*  "No" answers are always correct

*  Vector bit array (m) and hash functions (k)

N epochs



Clustering to Extract Representative Workflows

Slow
* Use clustering to find unique representative — -

flows in a sample of the event stream
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Integration with Pythia

* Pythia is a tracing system

* Places trace points for calls and programs
and stores trace points in logs.

* Utilizes constructed traces’ structure to

> Gatherwork @

figure out root cause analysis and adjusts

Gather data

flow skelet

Group critical
path skeletons by
performance

expectation

granularity of traces based on it.

* Traces can be constructed faster at a
smaller granularity if they don't pertain to
the task.

* Altair functions as the primary workflow
collection. It provides data in the form of
DAG'’s from which the workflow skeletons
can be generalized

* Integration is ongoing

[Ref] Ates, et.al “An automated, cross-layer instrumentation
framework for diagnosing performance problems in distributed
applications”
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Conclusions

* Developed an distributed tracing framework system based on timely dataflow model called
Altair that can achieve real time performance

* Evaluated the Altair System on for Anomaly Detection use case

* Evaluation shows that Altair is highly scalable and can be adapted for high production
environments

* Integration with Pythia
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