
Constructing Workflow-Centric Traces in close to Real
Time for the Hadoop File System

Neel Bhalla, Lexington High School

Adviser: Prof. Raja Sambasivan, Tufts University

1

June 8, 2020

Motivation

• Most modern services use a distributed architecture

• We can’t debug distributed services – complicated, with 1000’s
of nodes and services

• To find performance issues in distributed systems we need to do
tracing

2

March 26, 2019

Why is my movie
lagging?

My feed not
loading!

Debugging services in a distributed system is
a complicated problem

Workflow-Centric Tracing

• Every request involves a workflow

• Machine-centric techniques are
insufficient
• E.g., GDB, GProf, perf. counters, strace,

Dtrace

• Workflow: Structure & timing of work
done to process them

• Structure: Order, concurrency &
synchronization

3

Challenge with tracing:
real-time construction

Problem: Trace Reconstruction is Slow

• Tracking performance requires tracing services through a distributed system
• Data and computation intense
• Facebook collects 1 Billion Traces/day

• Existing tracing systems operate in mostly non-real time batch mode (e.g. Facebook ~
1 day turnaround to find problems)

• The “look-back” approach for finding anomalies or performances issues requires
archiving and analyzing massive amount of unorganized log data

4

Finding problems in distributed systems is like finding a needle in the haystack

Stream Processing Framework

• Tracing data is created as a series of events over time.

• In batch processing data is stored in a database. Applications would
query the data or compute over the data as needed

• Stream Processing turns this paradigm around: The application logic,
analytics, and queries exist continuously, and data flows through them
continuously.

• Upon receiving an event from the stream, a stream processing
application reacts to that event: it may trigger an action, update an
aggregate or other statistic, or “remember” that event for future
reference.

5

Events Database
Applications

Events Applications

Stream Processing

Batch Processing

Timely Dataflow

• Framework for writing dataflow programs

• Dataflow programming is a programming model in which the
computation can be represented as a directed graph: The data flows
along edges, while the computational logic in the vertices transforms it

• The messages flowing along edges are annotated with timestamps.

6

Dataflow

Dataflow Iteration

Reference Naiad: A Timely Dataflow System

Timely Dataflow used as the streaming framework

Previous Work

• Several Non-Real Time Approaches
• Google’s Dapper, Facebook’s Canopy, Brown’s X-Trace

• ETH’s Strymon [1] is a real-time stream processing system
• It builds on Naiad Streaming Timely Dataflow

• Traces are modelled as trees

• General infrastructure tracing frameworks (OpenTracing, X-Trace)
represent traces as DAG (Directed Acyclic Graphs)
• DAG can capture concurrency

• Strymon’s approach can be modified to incorporate DAG’s

7

Trees

DAG

We developed a new system for
processing traces called Altair

[1] Chothia, et. All, Online Reconstruction of Structural
Information from Datacenter Logs, EuroSys ’17

Proposed System For Real Time Trace Reconstruction – Altair

• Altair used Timely dataflow as the stream processing framework

• Input tracing event stream are reconstructed to create workflow model
which are represented as DAG

• Interesting DAG’s can be stored or queried for analysis

8

Naiad Timely Dataflow

Altair
Input Event
Stream

Output DAG
Stream

Cloud Infrastructure

Evaluation: HDFS Tracing
• Mass Open Cloud runs OpenStack

• Access to 10 compute instances, Altair runs on 8 instances, 2 instances
run Trace compression

• Instrumented HDFS and X-Trace server
• HDFS (Hadoop Distributed File System) is distributed file system, used with

MapReduce applications in datacenters

• Performance of HDFS can directly affect the performance of jobs

• Event Test Data: 3000 Traces, ~350 graph nodes/traces, 0.525 Million
event/Epoch

• Streaming simulator to generate event stream, replay and add
anomalies, latency in event stream

9
Acknowledgement : Mass Open Cloud for their support

Sample File Access HDFS
DAG (part of a trace)

Altair
implemented in
Rust

Results : Altair

10

N
u
m
b
e
r

o
f

E
v
e
n
t
s

P
r
o
c
e
s
s
e
d

(
M
i
l
l
i
o
n
s
/
s
e
c
)

The Altair approach is scalable with more than 99% parallelization

Number of Computers (N)

Altair
Amdhal Law 99% parallel portion (p=0.99)

0.23 Million
events/second

0.06 Million
events/second

Facebook collects 11 Million
events/second (1 Billion
Traces/day ~ (1000 nodes/trace))

Altair Events Processing Throughput

Amdhal Law: Maximum expected
improvement to a system when
only part of the system in
the parallelized

Speedup =

Altair Use Cases

• Anomaly Detection in distributed systems

• Cyber Intrusion Detection

• Failover Management

• Performance Issues

11

Altair Use Case: Anomaly Detection

• Anomaly Detection application
will be run continuously in two
steps
• The first step involves designing the

Bloom filter. The design of the Bloom
filter requires a representative set of
graphs. This step is not real-time.

• We are proposing graph clustering
approach to extract template
representative graphs that would be
programmed into Bloom Filter

• Second Step with Altair will run in real
time

• Any anomaly traces will be flagged by
the Bloom Filter with little overhead

12

Extract
anomalies

Event
Streams

Slow Datacenters

Sampling

Extract Template
Representative Traces Altair

Trace Compression

Visualization
Performance Metrics

Update Model
(Bloom Filters)

Fast

N epochs

• Bloom Filters
• Probabilistic Data stuctures

• "No" answers are always correct

• Vector bit array (m) and hash functions (k)

Bloom Filter

Clustering to Extract Representative Workflows

Example

Representative
Flow (DAG)
(9072 DAG)

13

• Use clustering to find unique representative
flows in a sample of the event stream

• Trace Compression using feature vectors
• MDL Score

• String Edit Distance (Levenshtein Distance)

• Hoffman Coding

• Feature Vectors provide insight into the
flows
• Used to extract performance metrics

• Visualization

• Computationally Expensive

• Representative traces used to design Bloom
Filters

Representative
Flow (DAG)
(9102 DAG)

Integration with Pythia

14

• Pythia is a tracing system

• Places trace points for calls and programs
and stores trace points in logs.

• Utilizes constructed traces’ structure to
figure out root cause analysis and adjusts
granularity of traces based on it.

• Traces can be constructed faster at a
smaller granularity if they don't pertain to
the task.

• Altair functions as the primary workflow
collection. It provides data in the form of
DAG’s from which the workflow skeletons
can be generalized

• Integration is ongoing

[Ref]

[Ref] Ates, et.al “An automated, cross-layer instrumentation
framework for diagnosing performance problems in distributed
applications”

PYTHIA ALTAIR

Database

Sends
events

Caches
constructed
traces

Notifies
construction
for traceidCollects

traces

Conclusions

• Developed an distributed tracing framework system based on timely dataflow model called
Altair that can achieve real time performance

• Evaluated the Altair System on for Anomaly Detection use case

• Evaluation shows that Altair is highly scalable and can be adapted for high production
environments

• Integration with Pythia

15

Acknowledgement

Thank you

• I want to thank
• MIT, Primes for giving me the opportunity to participate in the research program
• Prof. Raja Sambasivan, Tufts University for his invaluable guidance and spending time with

me to assist me with research
• Graduate students Emre Ates (BU) and Mania Abdi (Northeastern) for their feedback,

knowledge and interactions
• Mass Open Cloud for their access to cloud resources in support of this research

16

Questions

References

1. Canopy: An End-to-End Performance Tracing And Analysis System, Kaldor et al, SOSP ’17, October 28, 2017,
Shanghai, China

2. Principled workflow-centric tracing of distributed systems, Raja R. Sambasivan, et. al, In Proceedings of SoCC 2016

3. Visualizing request-flow comparison to aid performance diagnosis in distributed systems. Raja R. Sambasivan, et.
al, IEEE Transactions on Visualization and Computer Graphics (Proc. Information Visualization 2013), Vol. 19, no.
12, Dec. 2013

4. Naiad: A Timely Dataflow System, Derek G. Murray, et. al., SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania

5. https://github.com/TimelyDataflow/timely-dataflow

6. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure, Benjamin H. Sigelman, et. Al, Google Technical
Report, 2010 https://research.google.com/archive/papers/dapper-2010-1.pdf

7. Diagnosing performance changes by comparing request flows, Raja R. Sambasivan, et. Al., Proceedings of NSDI
2011

8. GraphZIP: a clique-based sparse graph compression method, Ryan A. Rossi, et al., Journal of Big Data, December
2018

9. Mining of Massive Datasets, Jure Leskovec, Book, 2010

10. Emre Ates, et. al, “An automated, cross-layer instrumentation framework for diagnosing performance problems in
distributed applications”, SoCC '19: Proceedings of the ACM Symposium on Cloud Computing, November 2019.

17

