Constructing Workflow-Centric Traces in close to Real
Time for the Hadoop File System

Neel Bhalla, Lexington High School

Adyviser: Prof. Raja Sambasivan, Tufts University

June 8, 2020

Motivation

* Most modern services use a distributed architecture

* We can’t debug distributed services — complicated, with 1000’s
of nodes and services

* To find performance issues in distributed systems we need to do
tracing

Debugging services in a distributed system is
a complicated problem

Netflix Twitter

Why is my movie My feed not
Tagging? Toading!

Several major US airlines hit by flight check-in
system outage

Zack Whittaker @zscwhittaker / 11:32am EDT + March 26,2019 B comment

T SN AY
CINNLES

R

Workflow-Centric Tracing

* Every request involves a workflow

* Machine-centric techniques are
insufficient
* E.g., GDB, GProf, perf. counters, strace,
Dtrace

* Workflow: Structure & timing of work
done to process them

e Structure: Order, concurrency &
synchronization

Challenge with tracing:
real-time construction

Response time: 8 ms

e & = @

Trace construction

Inter trace-point (edge)
latencies

Get L _ ; @
i O° : i

Frontend

- (lient Server

App - Table store EBackendstorage

Basic features:
O Trace point: Unique name / low-level params (e.g., CPU util., function vars)

= (ontext: request ID & logical clock

Problem: Trace Reconstruction is Slow

* Tracking performance requires tracing services through a distributed system
* Data and computation intense

* Facebook collects 1 Billion Traces/day

* Existing tracing systems operate in mostly non-real time batch mode (e.g. Facebook ~
1 day turnaround to find problems)

* The “look-back” approach for finding anomalies or performances issues requires
archiving and analyzing massive amount of unorganized log data

Finding problems 1in distributed systems is 1like finding a needle in the haystack

Stream Processing Framework

* Tracing data is created as a series of events over time.

* In batch processing data is stored in a database. Applications would
query the data or compute over the data as needed

* Stream Processing turns this paradigm around: The application logic,
analytics, and queries exist continuously, and data flows through them
continuously.

* Upon receiving an event from the stream, a stream processing
application reacts to that event: it may trigger an action, update an
aggregate or other statistic, or “remember” that event for future
reference.

Batch Processing

Database
Events Applications

» 0

10

Stream Processing

Events

Timely Dataflow

Dataflow

* Framework for writing dataflow programs

Connector

* Dataflow programming is a programming model in which the
computation can be represented as a directed graph: The data flows
along edges, while the computational logic in the vertices transforms it Dataflow lteration

* The messages flowing along edges are annotated with timestamps.

Timely Dataflow used as the streaming framework

Reference Naiad: A Timely Dataflow System

Previous Work

Several Non-Real Time Approaches Trees

* Google’s Dapper, Facebook’s Canopy, Brown’s X-Trace

@ Logevent [] Transaction 028 Transaction ID
ETH’s Strymon [1] is a real-time stream processing system Client Time —
* It builds on Naiad Streaming Timely Dataflow A {* ! *e : o—
* Traces are modelled as trees 4 -

. (R — - &
General infrastructure tracing frameworks (OpenTracing, X-Trace)) 1 09 20—

* DAG can capture concurrency

represent traces as DAG (Directed Acyclic Graphs) ' l
DAG

[1] Chothia, et. Al1l, Online Reconstruction of Structural
Information from Datacenter Logs, EuroSys ’17

Strymon’s approach can be modified to incorporate DAG’s

We developed a new system for
processing traces called Altair

Proposed System For Real Time Trace Reconstruction — Altair

Altair used Timely dataflow as the stream processing framework

Input tracing event stream are reconstructed to create workflow model
which are represented as DAG

Interesting DAG’s can be stored or queried for analysis

Input Event (S):tput DAG
Stream ream
0000

A A

Cloud Infrastructure

Evaluation: HDFS Tracing

* Mass O Cloud OpenStack i
ass Open Lloud runs Openotac Sample File Access HDFS

* Access to 10 compute instances, Altair runs on 8 instances, 2 instances DAG (part of a trace)
run Trace compression

* |nstrumented HDFS and X-Trace server

* HDFS (Hadoop Distributed File System) is distributed file system, used with
MapReduce applications in datacenters

* Performance of HDFS can directly affect the performance of jobs

* Event Test Data: 3000 Traces, ~350 graph nodes/traces, 0.525 Million
event /Epoch

* Streaming simulator to generate event stream, replay and add
anomalies, latency in event stream

Altair
implemented 1in
Rust

Acknowledgement : Mass Open Cloud for their support

Results : Altair

Number of Events Processed (Millions/sec)

Altair Events Processing Throughput

025 _0.23 Million
— Altair / N\ events/second
Amdhal Law 99% parallel portion (p=0.99 1
/ Facebook collects 11 Million
02 ~ events/second (1 Billion
Traces/day ~ (1000 nodes/trace))
015
0.06 Million)
01 events/secon Amdhal Law: Maximum eXpeC‘ted

improvement to a system when
only part of the system 1in

56 the parallelized

1

Speedup = Iz
0 (L—P)+(53)

2 4 6 8

Number of Computers (N)

The Altair approach is scalable with more than 99% parallelization

Altair Use Cases

Anomaly Detection in distributed systems

Cyber Intrusion Detection

Failover Management

Performance Issues

Altair Use Case: Anomaly Detection

* Anomaly Detection application

. .) Slow
will be run continuously in two
steps I . Event
Sampling

Streams

* The first step involves designing the
Bloom filter. The design of the Bloom
filter requires a representative set of
graphs. This step is not real-time.

* We are proposing graph clustering Update Model
approach to extract template ‘ (Bloom Filters)

representative graphs that would be Extract

programmed into Bloom Filter anomalies
* Second Step with Altair will run in real

time

Visualization « Bloom Filters

* Any anomaly traces will be flagged b .
4 / 99 ’ Performance Metrics * Probabilistic Data stuctures

the Bloom Filter with little overhead
* "No" answers are always correct

* Vector bit array (m) and hash functions (k)

N epochs

Clustering to Extract Representative Workflows

Slow
* Use clustering to find unique representative — -

flows in a sample of the event stream

F_—_

Sampling :;:::ns l
Fast
* Trace Compression using feature vectors -1‘_’&
ate Model
l — L ;

o MDL SCOl'e [(Bloom Filters)
* String Edit Distance (Levenshtein Distance) enmalies

* Hoffman Coding

Visualization
Performance Metrics

* Feature Vectors provide insight into the
flows

Example
* Used to extract performance metrics Graph Metrics SrmphFidiiiss
* Visualization 10+ A T o ————
18 00 0 000 @ V0N VDM OIS ¢ @00 ¢ 0
* Computationally Expensive = ¢ 0000 oumsome o o
0.8 4 ° L] ” = 16 1 L]
* Representative traces used to design Bloom . .
il g "7 .:.. o L& @ = 14
Filters 3 . o s%e0d %o o g
g 06 et I g .
% ® et s mec s oo E 27 Representative
0.5 % ® o oo o e P~
o eee o 8 N 0 ° ~ 104 . Flow (DAG)
. 0.4 @ ® ® (od- anomaly generated graphs 4
Represeniqi've .: “. s:f :. : blue-regularggraphs(lowgmu;:ation " // (91 02 DAG)
0.3 1 probability 1 ’
Flow (DAG) __] eemm oo green - 'seed’ graph e’ o o o o

< T T T T T T : J / ; y
0 2 4 6 8 10 12 14
(9072 DAG) - 2 * S 2 e = Edit-Distance

Edit-Distance

Integration with Pythia

* Pythia is a tracing system

* Places trace points for calls and programs
and stores trace points in logs.

* Utilizes constructed traces’ structure to

> Gatherwork @

figure out root cause analysis and adjusts

Gather data

flow skelet

Group critical
path skeletons by
performance

expectation

granularity of traces based on it.

* Traces can be constructed faster at a
smaller granularity if they don't pertain to
the task.

* Altair functions as the primary workflow
collection. It provides data in the form of
DAG'’s from which the workflow skeletons
can be generalized

* Integration is ongoing

[Ref] Ates, et.al “An automated, cross-layer instrumentation
framework for diagnosing performance problems in distributed
applications”

Figure 2: Pythia’s continuous cycle ofoperation. .~
N s

\ /

Sends

- even S -
Not1f1es
construction
CoTIects\ for traceid /aches
traces - constructed

traces

Conclusions

* Developed an distributed tracing framework system based on timely dataflow model called
Altair that can achieve real time performance

* Evaluated the Altair System on for Anomaly Detection use case

* Evaluation shows that Altair is highly scalable and can be adapted for high production
environments

* Integration with Pythia

Acknowledgement

Thank you

* | want to thank
* MIT, Primes for giving me the opportunity to participate in the research program

* Prof. Raja Sambasivan, Tufts University for his invaluable guidance and spending time with
me to assist me with research

* Graduate students Emre Ates (BU) and Mania Abdi (Northeastern) for their feedback,
knowledge and interactions

* Mass Open Cloud for their access to cloud resources in support of this research

References

9.

Canopy: An End-to-End Performance Tracing And Analysis System, Kaldor et al, SOSP ’17, October 28, 2017,
Shanghai, China

Principled workflow-centric tracing of distributed systems, Raja R. Sambasivan, et. al, In Proceedings of SoCC 2016

Visualizing request-flow comparison to aid performance diagnosis in distributed systems. Raja R. Sambasivan, et.
al, IEEE Transactions on Visualization and Computer Graphics (Proc. Information Visualization 2013), Vol. 19, no.
12, Dec. 2013

Naiad: A Timely Dataflow System, Derek G. Murray, et. al.,, SOSP’13, Nov. 3—6, 201 3, Farmington, Pennsylvania

https: / /qithub.com /TimelyDataflow /timely-dataflow

Dapper, a Large-Scale Distributed Systems Tracing Infrastructure, Benjamin H. Sigelman, et. Al, Google Technical
Report, 2010 https://research.google.com/archive /papers/dapper-2010-1.pdf

Diagnosing performance changes by comparing request flows, Raja R. Sambasivan, et. Al., Proceedings of NSDI
2011

GraphZIP: a clique-based sparse graph compression method, Ryan A. Rossi, et al., Journal of Big Data, December
2018

Mining of Massive Datasets, Jure Leskovec, Book, 2010

10. Emre Ates, et. al, “An automated, cross-layer instrumentation framework for diagnosing performance problems in

distributed applications”, SoCC '19: Proceedings of the ACM Symposium on Cloud Computing, November 2019.

