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Motivation

• Most modern services use a distributed architecture

• We can’t debug distributed services – complicated, with 1000’s 
of nodes and services

• To find performance issues in distributed systems we need to do 
tracing
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Why is my movie 
lagging?

My feed not 
loading!

Debugging services in a distributed system is 
a complicated problem



Workflow-Centric Tracing

• Every request involves a workflow

• Machine-centric techniques are 
insufficient 
• E.g., GDB, GProf, perf. counters, strace, 

Dtrace

• Workflow: Structure & timing of work 
done to process them

• Structure: Order, concurrency & 
synchronization
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Challenge with tracing: 
real-time construction



Problem: Trace Reconstruction is Slow

• Tracking performance requires tracing services through a distributed system
• Data and computation intense
• Facebook collects 1 Billion Traces/day 

• Existing tracing systems operate in mostly non-real time batch mode (e.g. Facebook ~ 
1 day turnaround to find problems)

• The “look-back” approach for finding anomalies or performances issues requires
archiving and analyzing massive amount of unorganized log data
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Finding problems in distributed systems is like finding a needle in the haystack



Stream Processing Framework

• Tracing data is created as a series of events over time.

• In batch processing data is stored in a database. Applications would 
query the data or compute over the data as needed

• Stream Processing turns this paradigm around: The application logic, 
analytics, and queries exist continuously, and data flows through them 
continuously.

• Upon receiving an event from the stream, a stream processing 
application reacts to that event: it may trigger an action, update an 
aggregate or other statistic, or “remember” that event for future 
reference.
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Timely Dataflow

• Framework for writing dataflow programs 

• Dataflow programming is a programming model in which the 
computation can be represented as a directed graph: The data flows 
along edges, while the computational logic in the vertices transforms it

• The messages flowing along edges are annotated with timestamps. 
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Dataflow

Dataflow Iteration

Reference Naiad: A Timely Dataflow System

Timely Dataflow used as the streaming framework



Previous Work

• Several Non-Real Time Approaches
• Google’s Dapper, Facebook’s Canopy, Brown’s X-Trace

• ETH’s Strymon [1] is a real-time stream processing system
• It builds on Naiad Streaming Timely Dataflow

• Traces are modelled as trees

• General infrastructure tracing frameworks (OpenTracing, X-Trace) 
represent traces as DAG (Directed Acyclic Graphs)
• DAG can capture concurrency

• Strymon’s approach can be modified to incorporate DAG’s
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Trees

DAG

We developed a new system for 
processing traces called Altair

[1] Chothia, et. All, Online Reconstruction of Structural
Information from Datacenter Logs, EuroSys ’17



Proposed System For Real Time Trace Reconstruction – Altair

• Altair used Timely dataflow as the stream processing framework

• Input tracing event stream are reconstructed to create workflow model 
which are represented as DAG

• Interesting DAG’s can be stored or queried for analysis
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Naiad Timely Dataflow 

Altair
Input Event 
Stream

Output DAG 
Stream

Cloud Infrastructure



Evaluation: HDFS Tracing
• Mass Open Cloud runs OpenStack

• Access to 10 compute instances, Altair runs on 8 instances, 2 instances 
run Trace compression

• Instrumented HDFS and X-Trace server
• HDFS (Hadoop Distributed File System) is distributed file system, used with 

MapReduce applications in datacenters

• Performance of HDFS can directly affect the performance of jobs

• Event Test Data: 3000 Traces, ~350 graph nodes/traces, 0.525 Million 
event/Epoch

• Streaming simulator to generate event stream, replay and add 
anomalies, latency in event stream
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Sample File Access HDFS 
DAG (part of a trace)

Altair 
implemented in 
Rust



Results : Altair

10

N
u
m
b
e
r
 
o
f
 
E
v
e
n
t
s
 
P
r
o
c
e
s
s
e
d
 
(
M
i
l
l
i
o
n
s
/
s
e
c
)

The Altair approach is scalable with more than 99% parallelization

Number of Computers (N)

Altair
Amdhal Law 99% parallel portion (p=0.99) 

0.23 Million 
events/second

0.06 Million 
events/second

Facebook collects 11 Million 
events/second  (1 Billion 
Traces/day ~ (1000 nodes/trace))

Altair Events Processing Throughput

Amdhal Law: Maximum expected 
improvement to a system when 
only part of the system in 
the parallelized

Speedup = 



Altair Use Cases

• Anomaly Detection in distributed systems

• Cyber Intrusion Detection

• Failover Management

• Performance Issues
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Altair Use Case: Anomaly Detection

• Anomaly Detection application 
will be run continuously in two 
steps
• The first step involves designing the 

Bloom filter.  The design of the Bloom 
filter requires a representative set of 
graphs.  This step is not real-time.  

• We are proposing graph clustering 
approach to extract template 
representative graphs that would be 
programmed into Bloom Filter

• Second Step with Altair will run in real 
time

• Any anomaly traces will be flagged by 
the Bloom Filter with little overhead 
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Extract 
anomalies

Event 
Streams

Slow Datacenters

Sampling

Extract Template
Representative Traces Altair

Trace Compression

Visualization
Performance Metrics

Update Model
(Bloom Filters)

Fast

N epochs

• Bloom Filters
• Probabilistic Data stuctures

• "No" answers are always correct

• Vector bit array (m) and hash functions (k)

Bloom Filter



Clustering to Extract Representative Workflows

Example

Representative 
Flow (DAG) 
(9072 DAG)
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• Use clustering to find unique representative 
flows in a sample of the event stream

• Trace Compression using feature vectors
• MDL Score

• String Edit Distance (Levenshtein Distance)

• Hoffman Coding

• Feature Vectors provide insight into the 
flows
• Used to extract performance metrics

• Visualization

• Computationally Expensive

• Representative traces used to design Bloom 
Filters

Representative 
Flow (DAG) 
(9102 DAG)



Integration with Pythia
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• Pythia is a tracing system

• Places trace points for calls and programs 
and stores trace points in logs.

• Utilizes constructed traces’ structure to 
figure out root cause analysis and adjusts 
granularity of traces based on it.

• Traces can be constructed faster at a 
smaller granularity if they don't pertain to 
the task.

• Altair functions as the primary workflow 
collection.  It provides data in the form of 
DAG’s from which the workflow skeletons 
can be generalized

• Integration is ongoing

[Ref]

[Ref] Ates, et.al “An automated, cross-layer instrumentation 
framework for diagnosing performance problems in distributed 
applications”

PYTHIA ALTAIR

Database

Sends 
events

Caches 
constructed 
traces

Notifies 
construction 
for traceidCollects 

traces



Conclusions

• Developed an distributed tracing framework system based on timely dataflow model called 
Altair that can achieve real time performance

• Evaluated the Altair System on for Anomaly Detection use case 

• Evaluation shows that Altair is highly scalable and can be adapted for high production 
environments

• Integration with Pythia
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