
Andrew Shen

Towards verifying application isolation 
for cryptocurrency hardware wallets



Personal computers (PCs) are inadequate for 
security sensitive operations

2

- Users use their PCs for many security sensitive operations such as 
cryptocurrency transactions and bank transactions.

- Security relies on PCs being secure.
- Modern PCs are full of security vulnerabilities.

- Too complicated.
- Lots of software, lots of room to go wrong.



- Separate the confirmation and the transaction.
- The hardware wallet connects to the computer through USB and 

provides a display and buttons to verify the transaction.
- They can reduce the size of the Trusted Computing Base (TCB) of the 

personal computer.

Hardware wallets provide security even when PC is 
compromised

3

Ledger: a common 
cryptocurrency hardware wallet



Hardware Wallet Diagram

4



Hardware wallet

5



Hardware wallets have isolation bugs

- Each wallet should be able to run numerous cryptocurrency 
applications (ex. Bitcoin, Ethereum, etc).

- The wallet operating system code base is still complex.
- Each of these applications should be isolated.
- Past wallets have had bugs and issues in security in past real-world 

wallets.
- Can we do better? Increase confidence that programs cannot 

interfere with or corrupt data in other programs or in our kernel?

6



How do we increase our confidence in our code?

- Add test cases, we can formulate examples to check the expected 
outcome against the actual outcome.

- Test cases can’t encompass all edge cases.

Wouldn’t it be nice if we could “test against all possible inputs?”

- We describe the expected outcome of the kernel and check that the 
kernel always matches our expectation, regardless of the input.

- This is known as verification.

7



Goal: Apply verification to prove security properties 
of a hardware wallet kernel.

8



- Kernel for an embedded device.

Our kernel has the following features:

- Small code base.
- Install applications.
- Loads and launches application.

Simple kernel design

9



A deeper look into verification

Implementation - our running code that is untrusted.

Specification - our description of how the code should behave. It is 
trusted.

- If the “implementation satisfies the specification”, this means that “for 
any input, our code correctly executes as the specification states.”

- In this project, the specification is we have set up the kernel in a such 
a way that code running in the user space cannot corrupt kernel 
memory.

10



Related work 
- Hyperkernel (SOSP ‘17) and Serval (SOSP ‘19) outlined ways of using 

push-button verification to prove correct kernels’ system calls.
- Does not reason about user mode (i.e. applications running on the 

kernel).
- Does not reason about configuration of memory protection.
- Does not reason about CPU privilege levels.

11



Structure of our proof
- Show that the kernel sets up the machine in a reasonable way and enters 

user mode (memory protection, CPU privilege levels).
- Show that from that starting state, execution satisfies invariants such that the 

kernel memory cannot be overwritten.

12



Proof
OK(s) - our predefined “reasonable” state.

Base Case: 

OK(s0), where s0 is the state of the machine immediately after kernel finishes booting.

Induction Case:

∀s, s′ : OK(s) ⟹ s′ = step(s) ⟹ is_user(s′) ∧ OK(s) ⟹ 

(is_user(s′) ∧ OK(s′)) ∨ (is_m(s′) ∧ pc(s′) = mtvec(s)) 

13



Proof (cont.)

14



Implementation of proof
- Build a symbolic RISC-V machine emulator using Rosette.
- Apply this to our sample kernel.
- Set up a machine to be in a generic OK state.
- Run a symbolic instruction to generate a resulting state.
- Compare kernel memory in both states to generate our proof formula.
- Solve formula.

15



Rosette

- Nice interface to “lift” or automatically port our implementation code so 
that it can work with symbolic values.

- Prove properties about the behaviour of our kernel.

Z3

- Z3 is an SMT solver that we used to prove our properties.

Powerful tools: Rosette and Z3

16



Example: Rosette

17

Code:

#lang rosette/safe

(define (add x y)
(+ x y))

(define x 3)
(define y 5)
(printf "Concrete Result: ~a~n" (add x y))

(define-symbolic sym-x sym-y integer?)
(printf "Symbolic Result: ~a~n" (add sym-x sym-y))

(define model-add (verify
(assert (not (equal? (add sym-x sym-y) 10)))))

(printf "Result of model-add: ~a~n" model-add)

Output:

Concrete Result: 8
Symbolic Result: (+ sym-x sym-y)
Result of model-add: 
(model
 [sym-x 10]
 [sym-y 0])



Example: step
(define (step m)

(define next_instr (get-next-instr m)) ; fetch actual instruction
(define decoded_instr (decode m next_instr))
(execute decoded_instr m))

18



Example: decode
(define (decode m b_instr)

(define instr null)
(define opcode (extract 6 0 

b_instr))
(define fmt (get-fmt m opcode))
(cond

[(eq? fmt 'R)
(decode-R m b_instr)]

[(eq? fmt 'I)
(decode-I m b_instr)]

[...]
[else

(illegal-instr m)]))

(provide decode)

(define (decode-R m b_instr)
(define op null)
(define rd (extract 11 7 b_instr))
(define funct3 (extract 14 12 b_instr))
[...]
(define valid null)
(cond

[(and (bveq funct3 (bv #b000 3))
(bveq funct7 (bv #b0000000 7)))
(list 'add rd rs1 rs2)]

[(and (bveq funct3 (bv #b000 3))
(bveq funct7 (bv #b0100000 7)))
(list 'sub rd rs1 rs2)]

[...]
[else

(illegal-instr m)]))

19



(define (execute instr m)
(define opcode (list-ref instr 0))
(define pc (get-pc m))
(cond

[(eq? opcode 'lb)
(define rd (list-ref-nat instr 1))
(define v_rs1 (gprs-get-x m (list-ref-nat instr 2)))
[...]
(define val (sign-extend (machine-ram-read m adj_addr 1) (bitvector 64)))
(gprs-set-x! m rd val)
(set-pc! m (bvadd pc (bv 4 64)))
instr]

[(eq? opcode 'sb)
(define v_rs1 (gprs-get-x m (list-ref-nat instr 1)))
[...]
(define success (machine-ram-write! m adj_addr v_rs2 8))
instr])]))

Example: execute

20



Rosette recap
- Encapsulate the state of a CPU into a formula.
- Reason about the effect of running any instruction on the CPU.
- If before and after running any instruction the kernel memory is unchanged, 

then this indicates that no instruction in user mode can write on kernel 
memory.

21



Current results
- Built fully functional kernel with memory protection.
- Built a symbolic emulator.
- Proved that the kernel configures the machine such that user applications are 

properly isolated.
- Implemented multiple memory representations to improve verification time.
- https://github.com/AndrewTShen/riscv-symbolic-emulator

Future Experimentations

- Continue to expand our symbolic machine emulator.

22

https://github.com/AndrewTShen/riscv-symbolic-emulator/tree/master/emulate_fnmem


Acknowledgements
- PRIMES
- Anish Athalye
- My family

23


