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Personal computers (PCs) are inadequate for
security sensitive operations

- Users use their PCs for many security sensitive operations such as
cryptocurrency transactions and bank transactions.
- Secuirity relies on PCs being secure.
- Modern PCs are full of security vulnerabilities.
- Too complicated.
- Lots of software, lots of room to go wrong.



Hardware wallets provide security even when PC is
compromised

Separate the confirmation and the transaction.
The hardware wallet connects to the computer through USB and
provides a display and buttons to verify the transaction.

They can reduce the size of the Trusted Computing Base (TCB) of the
personal computer.

Ledger: a common [2)
cryptocurrency hardware wallet
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Hardware wallets have isolation bugs

- Each wallet should be able to run numerous cryptocurrency
applications (ex. Bitcoin, Ethereum, etc).

- The wallet operating system code base is still complex.

- Each of these applications should be isolated.

- Past wallets have had bugs and issues in security in past real-world
wallets.

- Can we do better? Increase confidence that programs cannot
interfere with or corrupt data in other programs or in our kernel?



How do we increase our confidence in our code?

- Add test cases, we can formulate examples to check the expected
outcome against the actual outcome.
- Test cases can’'t encompass all edge cases.

Wouldn’t it be nice if we could “test against all possible inputs?”

- We describe the expected outcome of the kernel and check that the
kernel always matches our expectation, regardless of the input.
- This is known as verification.



Goal: Apply verification to prove security properties
of a hardware wallet kernel.



Simple kernel design
- Kernel for an embedded device.
Our kernel has the following features:

- Small code base.
- Install applications.
- Loads and launches application.



A deeper look into verification

Implementation - our running code that is untrusted.

Specification - our description of how the code should behave. It is
trusted.

- If the “implementation satisfies the specification”, this means that “for
any input, our code correctly executes as the specification states.”

- In this project, the specification is we have set up the kernel in a such
a way that code running in the user space cannot corrupt kernel
memory.
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Related work

- Hyperkernel (SOSP ‘17) and Serval (SOSP ‘19) outlined ways of using
push-button verification to prove correct kernels’ system calls.
- Does not reason about user mode (i.e. applications running on the
kernel).
- Does not reason about configuration of memory protection.
- Does not reason about CPU privilege levels.
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Structure of our proof

- Show that the kernel sets up the machine in a reasonable way and enters
user mode (memory protection, CPU privilege levels).

- Show that from that starting state, execution satisfies invariants such that the
kernel memory cannot be overwritten.
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Proof

OK(s) - our predefined “reasonable” state.
Base Case:
OK(s,), where s is the state of the machine immediately after kernel finishes booting.

Induction Case:
Vs, s': OK(s) = s' = step(s) = is_user(s') A OK(s) =

(is_user(s') A\ OK(s")) V (is_m(s") A pc(s') = mtvec(s))
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Proof (cont.)
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Implementation of proof

- Build a symbolic RISC-V machine emulator using Rosette.

- Apply this to our sample kernel.

- Set up a machine to be in a generic OK state.

- Run a symbolic instruction to generate a resulting state.

- Compare kernel memory in both states to generate our proof formula.
- Solve formula.
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Powerful tools: Rosette and Z3

Rosette

- Nice interface to “lift” or automatically port our implementation code so
that it can work with symbolic values.
- Prove properties about the behaviour of our kernel.

Z3

- Z3is an SMT solver that we used to prove our properties.
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Example: Rosette

Code: Output:

#lang rosette/safe Concrete Result: 8
Symbolic Result: (+ sym-x sym-y)
Result of model-add:
(model
[sym-x 10]
[sym-y 0])

(define (add x y)
(+ xy))

(define x 3)
(define y 5)
(printf "Concrete Result: ~a~n" (add x y))

(define-symbolic sym-x sym-y tinteger?)
(printf "Symbolic Result: ~a~n" (add sym-x sym-y))

(define model-add (verify
(assert (not (equal? (add sym-x sym-y) 10)))))
(printf "Result of model-add: ~a~n" model-add)
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Example: step

(define (step m)
(define next_instr (get—-next-instr m)) ; fetch actual -dinstruction
(define decoded_instr (decode m next_instr))
(execute decoded_instr m))
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Example: decode

(define (decode m b_dinstr)
(define dinstr null)
(define opcode (extract 6 0
b_dinstr))
(define fmt (get-fmt m opcode))
(cond
[(eq? fmt 'R)
(decode-R m b_1instr)]
[(eq? fmt 'I)
(decode-I m b_dinstr)]
[...]
[else
(illegal-instr m)]))

(provide decode)

(define (decode-R m b_instr)
(define op null)
(define rd (extract 11 7 b_instr))
(define funct3 (extract 14 12 b_instr))
[...]
(define valid null)
(cond
[(and (bveq funct3 (bv #b000 3))
(bveq funct7 (bv #b000EEEOO 7)))
(list 'add rd rsl1 rs2)]
[(and (bveq funct3 (bv #b000 3))
(bveq funct7 (bv #b0100000 7)))
(list '"sub rd rsl1 rs2)]
[...]
[else
(illegal-instr m)]))
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Example: execute

(define (execute instr m)
(define opcode (list-ref instr 0))
(define pc (get-pc m))
(cond
[ (eq? opcode 'lb)
(define rd (list-ref-nat instr 1))
(define v_rsl (gprs-get-x m (list-ref-nat instr 2)))
[...]
(define val (sign-extend (machine-ram-read m adj_addr 1) (bitvector 64)))
(gprs-set-x! m rd val)
(set-pc! m (bvadd pc (bv 4 64)))
instr]
[ (eq? opcode 'sb)
(define v_rsl (gprs-get-x m (list-ref-nat instr 1)))
[...]
(define success (machine-ram-write! m adj_addr v_rs2 8))

instr])]))
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Rosette recap

- Encapsulate the state of a CPU into a formula.

- Reason about the effect of running any instruction on the CPU.

- If before and after running any instruction the kernel memory is unchanged,
then this indicates that no instruction in user mode can write on kernel

memory.
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Current results

- Built fully functional kernel with memory protection.

- Built a symbolic emulator.

- Proved that the kernel configures the machine such that user applications are
properly isolated.

- Implemented multiple memory representations to improve verification time.

- https://github.com/AndrewTShen/riscv-symbolic-emulator

Future Experimentations

- Continue to expand our symbolic machine emulator.

22


https://github.com/AndrewTShen/riscv-symbolic-emulator/tree/master/emulate_fnmem
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