The Variable-Processor Cup Game

Alek Westover

Belmont High School

June 7, 2020

p-PROCESSOR CUP GAME ON n CUPS

1

n cups

p-PROCESSOR CUP GAME ON n CUPS

ool — 1ol

n cups filler adds p units of water
(with at most 1 unit per cup)

p-PROCESSOR CUP GAME ON n CUPS

ool = 1Leel — 1l

n cups filler adds p units of water emptier chooses p cups and
(with at most 1 unit per cup) removes (at most) 1 unit from each

p-PROCESSOR CUP GAME ON n CUPS

TE I Rt ST Rt T I

n cups filler adds p units of water emptier chooses p cups and
(with at most 1 unit per cup) removes (at most) 1 unit from each

p-PROCESSOR CUP GAME ON n CUPS

TE I Rt ST Rt T I

n cups filler adds p units of water emptier chooses p cups and
(with at most 1 unit per cup) removes (at most) 1 unit from each

» Filler: wants high backlog
» Emptier: wants low backlog
In this talk we take the side of the filler (we want high backlog)

IMPORTANT APPLICATION: WORK SCHEDULING

=18 ps -ef
PPID C STIME TTY TIME
a0

00:00:00
00:00:00
00:00:05
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:01:01
00:00:00

[
o

Mol o

n tasks
(cups)

5 [ksoftirqd/0]

1 [wat.chdog/0]

Ciren . 6% 393, 1165 thr; 1 running

[}
Juse/Lib/systend]
[kthreadd]
[kworker/0:0H]

1
2 [. Load average: 1.16 1.71 2.04
3 [8.0%] Uptime: 24 days, 18:15:13
4 [2.0%]
Mem[ILITIIITIITITITII14.476/8.00G]
SwpLlEEEEEETTrrn 1.326/3.00G]

[migration/0]
o]
sched]
“add-drain]

PID USER VIRT RES S CPU% MEM%¥ TIME+ Command

31938 alekwesto 5472M 182M ? 7. 2. :53.72 /Applications/iTerm.ap|
4917M 242M 7 2. . :11.52 /Applications/Google C
8640M 91016 7 . . :10.85 /Applications/Google C
516IM 139M 7 . :29.51 /Applications/Spotify.
4474M 48288 7 . :08.20 /Applications/Google C
4196M 2576 . . .18 htop
8858M 210M ? . . .27 /Applications/Spotify.
b1975 alekwesto 6094M 143M 7 0. . :58.96 /Applications/Dropbox.
f2001 alekwesto 4861M 55752 7 . : .61 /Applications/Dropbox
p8348 alekwesto 8662M 95192 ? 10 /Applications/Google C

fliclo et @scarcigh Lerggiree [gsorta) Gice Agkill [glouit

[kdevtnpfs]
[retn
[khungtaskd]
[writeback]
[kintegrityd]

[kblockd]
[nd]
[edac-poller]
[watchdogd]
[kswapda]
[ksd]
[khugepaged]
[crypto]

backlog
= farthest behind

n >r on any task

rs to tasks

new work arrives allocate p process
(filler) (emptier)

PREVIOUS WORK 1/2/3

Adaptive filler: can see emptier’s actions

With an adaptive filler optimal backlog is ©(log n).

Oblivious filler: can not see emptier’s actions (“blindfolded”)

With an oblivious filler optimal backlog is between §2(log log n) and
O(loglogn + log p) (with high probability in short games).

![C. L. Liu. Scheduling algorithms for multiprocessors in a hard real-time environment. JPL Space Programs
Summary, 1969.]

2[William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. SODA, 2020.]

3[M. Bender, M. Farach-Colton, and W. Kuszmaul. Achieving optimal backlog in multi-processor cup games. In
Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC), 2019.]

THIS TALK
Our Question: What if p can change?

Variable-Processor Cup Game:
Each round the filler can change p

Modification seems small...

OUR RESULT

The variable-processor cup game and the
p-processor cup game are fundamentally different!

ADAPTIVE FILLER LOWER BOUND ON BACKLOG

There is an adaptive filling strategy that achieves backlog
Q(nl—e)
for any constant € > 0 in running time

20(10g2 n) '

ADAPTIVE FILLER LOWER BOUND ON BACKLOG

There is an adaptive filling strategy that achieves backlog
Q(n)

in running time
O(n!).

UPPER BOUND ON BACKLOG

A greedy emptier never lets backlog exceed

O(n).

This matches our lower bound!

Corollary follows from more general theorem:

A greedy emptier maintains the invariant:

Average fill of k fullest cups < 2n — k.

OBLIVIOUS FILLER LOWER BOUND ON BACKLOG

Theorem
There is an oblivious filling strategy that achieves backlog

Q(nl—e)

for constant e > 0 with probability at least 1 — 2~ PoWos(n) jpy
running time 20(10g* n) against a greedy-like emptier.

A-greedy-like emptier:

k) T I]

Adaptive Filler

Lower Bound
Proof Sketch

AMPLIFICATION LEMMA

Lemma

Given a strategy f for achieving backlog f(n) on n cups, we can
construct a new strategy f’ that achieves backlog

IL
fin) = (1-6)3 f(ns‘(1-96))

=0

for parameters L € N,0 < 6 < 1/2.
If the running time of f (n) is T(n) the running time of f'(n) satisfies

L
T'(n) <ny_ nd'T(ns'(1-9)).
=0

PROOF META-STRUCTURE

» A starts as the dn fullest cups, B as the (1 — d)n other cups.
» Repeatedly apply f to B and swap generated cup into A.
» Decrease p, recurse on A.

f(1=d)n)

AMPLIFICATION LEMMA PROOF SKETCH

A B

Instantiate A and B

AMPLIFICATION LEMMA PROOF SKETCH

A B

A
< N\

Filling Strategy: Place 1 fill in each cup in A, try to apply f to B.

AMPLIFICATION LEMMA PROOF SKETCH

A B

N
4l N\

If the emptier neglects A then the average fill of A rises!
We repeat our strategy many times; if the emptier neglects A too
many times we get the desired backlog in A.

AMPLIFICATION LEMMA PROOF SKETCH

A B

If emptier doesn’t neglect A filler can apply f to B

AMPLIFICATION LEMMA PROOF SKETCH

A B

Get a cup with high fill in B, swap it into A

AMPLIFICATION LEMMA PROOF SKETCH

A B

Note: swaps increase average fill of A, decrease average fill of B.

AMPLIFICATION LEMMA PROOF SKETCH

A B

Apply f to B again

AMPLIFICATION LEMMA PROOF SKETCH

A B

|

Swap cup into A again

AMPLIFICATION LEMMA PROOF SKETCH

A B

Swap this cup into A.

AMPLIFICATION LEMMA PROOF SKETCH

A B

Eventually average fill of A is at least (1 — J)f (n(1 — 9)).
Average fill of Bis —(0)f (n(1 — 9)).

AMPLIFICATION LEMMA PROOF SKETCH

A B

M1

ge-

Recurse on A for L levels of recursion.
Problem size shrinks by a factor of ¢ each time.

AMPLIFICATION LEMMA PROOF SKETCH

A B

M1

ge-

L
fin) = (1=6) f(ns‘(1-06))

0

~
I

ADAPTIVE FILLER LOWER BOUND

Let € > 0 be any constant. There exists § = ©(1) such that by
repeated amplification we get:

Theorem

There is an adaptive filling strategy that achieves backlog Q(n'=€) in
running time 20(log’n),

T008y/(15) ™)

[o
f(1°gl/(1—5) n,),l/ \
[ZSs I AN

AN AN
— N 7 7z~ |©(ogn)
J/. VAN é

EXTREMAL ADAPTIVE FILLER LOWER BOUND
By repeated amplification using § = ©(1/n) we get:

Theorem

There is an adaptive filling strategy that achieves backlog Q2(n) in
running time O(n!).

f n/no

[s
.fn ng—1
[s

lfnn“72 7
———
v O(n)
-

=l __

OPEN QUESTIONS

» Can we extend the oblivious lower bound construction to
work with arbitrary emptiers?

» Are there shorter more simple constructions?

ACKNOWLEDGEMENTS

» My mentor William Kuszmaul
» MIT PRIMES
» My Parents

Question Slides

UPPER BOUND PROOF SKETCH

Induct on t. Fix k. Define sets of cups:
> A: (emptied from) N (k fullest in S;) N (k fullest in Sy 1)
» B: (emptied from) N (k fullest in S;) N (not k fullest in Sy 1)
» C: AC s the k fullest cups in S;44

ttk(Se+1) is largest if fill from BC is pushed into A

4

+|BC|

|

A B C A B C

NEGATIVE FILL

In lower bound proofs we allow negative fill
» Measure fill relative to average fill
> Important for recursion

» Strictly easier for the filler if cups can zero out

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

S =

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

3=
| e |
—
| e |
| e |
—
| e |
—

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

S =
[——]
—
]

—
[——]
—
[——]

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

L

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

3
|-

Hl

= =

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

3
|-
w
:
1

S
— | [=
)

3
|

S o=

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

3 3
— =
w

=
-
[}
.
t

Q
E
. |
S| =
— .
— +

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

ol

3
— | |—
< .
1

3
-
[
.
+

3
[
Sl =

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

e
.
.

3
|-
ol -
:
1

3
—_ | (=
)

3
I

S =

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

L
2

Wl
3

3]
(v} w .
. .

}

3
\
Si= =

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

NI

ol
.
+

S| 3
— |~
ol .
N

S
-
Do
.
t

Q

3
[

Si= =

SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

Achieves backlog;:

1+ 1
n n-—1

1
+-~-+§ = Q(logn).

SINGLE-PROCESSOR UPPER BOUND

A greedy emptier — an emptier that always empties from the
fullest cup — never lets backlog exceed O(logn).

Definitions
» S;: state at start of round ¢

» [;: state after the filler adds water on round ¢, but before
the emptier removes water

> 1k(S): average fill of k fullest cups at state S.

SINGLE-PROCESSOR UPPER BOUND PROOF

Proof: Inductively prove a set of invariants:

1 1

< — —.
Nk(St)_k—i-l_'_ +n

Let a be the cup that the emptier empties from on round ¢

If a is one of the k fullest cups in S;1:

e (Se1) < pg(St)-

Otherwise:

1
e(Ser1) <ty (Ir) < prqa(Se) + 1

PREVIOUS WORK ON CUP GAMES

| 2

| 2

>
| 2

The Single-Processor cup game (p = 1) has been tightly
analyzed with oblivious and adaptive fillers (i.e. fillers
that can’t and can observe the emptier’s actions).

The Multi-Processor cup game (p > 1) is substantially
more difficult. With an adaptive filler:

> Kuszmaul established upper bound of O(log 1).*
> We established a matching lower bound of 2(log n).

The multi-processor cup game with an oblivious filler has
not yet been tightly analyzed.

Variants where valid moves depend on a graph have been
studied.

Variants with resource augmentation have been studied.

Variants with semi-clairvoyance have been studied.

4William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. SIAM, 2020.

PREVIOUS WORK —p =1
Single-processor cup game
Adaptive filler:
» Q(logn) lower bound
» O(logn) upper bound
Oblivious filler (can’t see emptier’s actions): °
» Q(loglogn)lower bound

» O(loglogn) upper bound (with good probability in short
games)

5[M. Bender, M. Farach-Colton, and W. Kuszmaul. Achieving optimal backlog in multi-processor cup games. In
Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC), 2019.]

PREVIOUS WORK — RESTRICTED VERSIONS

Cup flushing game (emptier can completely empty cups):®
» Q(loglogn)lower bound
» O(loglogn) upper bound
Bamboo Garden Trimming (filler always adds same amount):”
» 2 lower bound
» 2 upper bound

Cups are nodes in a graph, moves restricted based on graph
structure. D is the diameter of the graph.

» (D) lower bound
» O(D) upper bound

6[I’. F. Dietz and R. Raman. Persistence, amortization and randomization. In Proceedings of the Second An- nual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 78-88, 1991.]

7[Bili), Davide, Luciano Guala, Stefano Leucci, Guido Proietti, and Giacomo Scornavacca. “Cutting Bamboo
Down to Size.” arXiv preprint arXiv:2005.00168 (2020).]

Oblivious Filler
Lower Bound

OBLIVIOUS FILLER LOWER BOUND

Oblivious Filler: Can’t observe the emptier’s actions

» Classically emptier does better in the randomized setting.
» But not in the variable-processor cup game!

» We get the same lower bound as with an adaptive filler in
quasi-polynomial length games!

OBLIVIOUS FILLER LOWER BOUND

Definition

A-greedy-like emptier:

Let x,y be cups. If fill(x) > fill(y) + A then a A-greedy-like
emptier empties from y only if it also empties from x.

Oblivious filler can achieve backlog 2(n'~¢) for € > 0 constant
in running time 2P°Y1°8(") against a A-greedy-like emptier
(A < O(1)) with probability at least 1 — 2~ Polylog(n),

FLATTENING

A cup configuration is R-flat if all cups have fills in [-R, R].

Oblivious filler can get a 2(2 + A)-flat configuration from an R-flat
configuration against a A-greedy-like emptier in running time O(R).

OBLIVIOUS FILLER: CONSTANT FILL

Getting constant fill in a known cup is hard now. Strategy:

| 2

>

Play many single-processor cup games on (1) cups
blindly. Each succeeds with constant probability.

By a Chernoff Bound with probability 1 — 2(") at least a
constant fraction rc of these succeed.

Set p = nc.

Fill nc known cups; because emptier is greedy-like it must
focus on the nc cups with high fill before these cups.

Recurse on the nc known cups with high fill.

OBLIVIOUS AMPLIFICATION LEMMA
Almost identical to the Adaptive Amplification Lemma!

Lemma

Given a strategy f for achieving backlog f(n) on n cups, we can
construct a new strategy that achieves backlog

IL
f'(n) (1-8)) f(@
=0

for parameters L € N,0 < 6 < 1/2 and constant ¢ € (0,1) of our
choice against a greedy-like emptier.

(Note: Lemma is actually more complicated than this.)

OBLIVIOUS FILLER LOWER BOUND
Theorem
There is an oblivious filling strategy that achieves backlog
Q(nl—e)

for constant e > 0 with probability at least 1 — 2~ PoWos(n) jpy
running time 20(10g* n) against a greedy-like emptier.

Achieve this probability by a union bound on 2P°¥1°g(") events.
Proof notes:

» Similar to adaptive filler proof

» need larger base case for union bound to work; this doesn’t
harm backlog though

