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Deep learning and 
adversarial examples
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• Has become ubiquitous in the last few years and can outperform humans on some tasks
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Deep learning

(DeepAI 2019)

(Ruizendaal 2017)

(Karpathy 2015)
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Adversarial attacks
• Modify image in a set S, such as L2-ball of size e, to maximize loss L

• Imperceptible to human observer

• Fools deep learning models

(Mądry and Schmidt 2018)

መ𝛿 = argmax
| 𝛿 |<𝜖

𝐿 𝜃, 𝑥 + 𝛿, 𝑦
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Adversarial attacks
• Modify image in a set S, such as L2-ball of size e, to maximize loss L

• Imperceptible to human observer

• Fools deep learning models

• Many ways of synthesizing adversarial examples:
• Such as PGD - projected gradient descent (Mądry et al. 2017)

(Mądry and Schmidt 2018)

መ𝛿 = argmax
| 𝛿 |<𝜖

𝐿 𝜃, 𝑥 + 𝛿, 𝑦

e

Aditya Saligrama 10th Annual MIT PRIMES Conference June 7, 2020



• Train robust model q on dataset D:
• Resistant to adversarial attacks

• Robust training via PGD (Mądry et al. 2017)
• Many other ways…

Robust training

Training dataset

Adversary

Neural network

Model parametersPerturbation

New training data

Diagram adapted from Bhat (2018)

𝜃 = argmin
𝜃

𝐸 𝑥,𝑦 ~𝐷 [ max
𝛿 ≤𝜖

𝐿 𝜃, 𝑥 + 𝛿, 𝑦 ]
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• Train robust model q on dataset D:
• Resistant to adversarial attacks

• Robust training via PGD (Mądry et al. 2017)
• Many other ways…

Robust training
𝜃 = argmin

𝜃
𝐸 𝑥,𝑦 ~𝐷 [ max

𝛿 ≤𝜖
𝐿 𝜃, 𝑥 + 𝛿, 𝑦 ]

Training dataset

Adversary

Neural network

Model parametersPerturbation

New training data

Diagram adapted from Bhat (2018)
Natural train Robust train

(e=0.5)

Natural test

Adv. test (e=0.5)

ResNet18 models (He et al. 2015) 
trained on CIFAR10
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• Train robust model q on dataset D:
• Resistant to adversarial attacks

• Robust training via PGD (Mądry et al. 2017)
• Many other ways…

Robust training

Training dataset

Adversary

Neural network

Model parametersPerturbation

New training data

Diagram adapted from Bhat (2018)
Natural train Robust train

(e=0.5)

Natural test 95% 88%

Adv. test (e=0.5) 0% 69%

ResNet18 models (He et al. 2015) 
trained on CIFAR10

𝜃 = argmin
𝜃

𝐸 𝑥,𝑦 ~𝐷 [ max
𝛿 ≤𝜖

𝐿 𝜃, 𝑥 + 𝛿, 𝑦 ]
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Metrics
• Assess resistance to adversarial attacks at multiple attack strengths

• Adversary can choose any arbitrary attack strength against deployed model

• We define AUC metric as

• In practice, evaluate as a Riemann sum

• Use this metric in addition to assessing accuracy at defined attack strengths
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Ensembling schemes
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Adversarial ensembling
Using ensembling for training (lots of prior work, different from previous slide):

• Vanilla ensembling (baseline for this talk)
• Random initializations, train M standard models

• Ensemble Adversarial Training (Tramèr et al. 2017)
• Collect adversarial examples from multiple models

• Transfer examples to train single model

• Ensemble diversity (Pang et al. 2019)
• Coupled training of all M models to promote diversity

Robust training 
(Mądry et al. 2017)

Vanilla ensembling Ensemble diversity (Pang et al. 2019)

Natural test 88% 94% 93%

Adv. test 69% (e=0.5) 0% 30% (e=0.02)
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Our proposed methods
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• Train M independent models robustly
• i’th model with seed i

Robust ensembling

.

.

.

p1

p2

pM

𝜃i = argmin
𝜃

𝐸 𝑥,𝑦 ~𝐷 [ max
𝛿 ≤𝜖

𝐿 𝜃, 𝑥 + 𝛿, 𝑦 ]

Robust training with initialization seed i
Robust 
model 
q1

Robust 
model 
q2

Robust 
model 
qM

𝑐 𝑥, 𝜽, 𝝅 = max
𝑦



𝑖=1

𝑀

𝜋𝑖𝜃𝑖(𝑥, 𝑦)

𝜃𝑖 𝑥, 𝑦 : model i’s probability 
of class y on instance x
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How to understand ensembles?

𝜽𝟏 𝜽𝟐 𝜽𝟑

𝛿1 Loss

𝛿2

𝛿3

Adversary 
strategy

Player strategy

Value of the game (discrete):
• Player: random strategy over M models

• Probability 𝜋1…𝜋𝑀
• Adversary: perturbation 𝛿1…𝛿𝑆 (𝑆 → ∞) with probability 𝑞1…𝑞𝑆

Key point: Adversary plays against ensemble rather than single 
model for each instance

max
𝛿∈𝑆

𝐿 𝜃, 𝑥 + 𝛿, 𝑦

vs.
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How to understand ensembles?

𝜽𝟏 𝜽𝟐 𝜽𝟑

𝛿1 Loss

𝛿2

𝛿3

Adversary 
strategy

Player strategy

Value of the game (discrete):
• Player: random strategy over M models

• Probability 𝜋1…𝜋𝑀
• Adversary: perturbation 𝛿1…𝛿𝑆 (𝑆 → ∞) with probability 𝑞1…𝑞𝑆

Key point: Adversary plays against ensemble rather than single 
model for each instance

max
𝛿∈𝑆

𝐿 𝜃, 𝑥 + 𝛿, 𝑦

vs.

robust ensemble loss ≤ single robust model loss
Why? Choose q to focus on single model

This allows accuracy to increase per model in 
the ensemble for a given e
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Robust and non-robust features
• Images comprised of robust and non-robust features (Ilyas et al. 2019)

• Key insight 1: Robust features do not have enough info about particular instances
• Non-robust features contain remaining info

(Engstrom et al.  2019)

Robust features

Eyes Gills

Robust + non-robust 
features
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Robust and non-robust features
• Images comprised of robust and non-robust features (Ilyas et al. 2019)

• Training at lower e means less resistance to non-robust features and better natural accuracy

• Key insight 1: Robust features do not have enough info about particular instances
• Non-robust features contain remaining info

• Objective: Augment non-robust features with robust features without losing robustness

• Key insight 2: Lower train e confers better natural accuracy at the cost of robustness
• Objective: Combine with ensembling to maintain robustness with better natural accuracy

(Engstrom et al.  2019)

Robust features

Eyes Gills

Robust + non-robust features
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Robust ensembling: Results
Single non-
robust model

Single
robust model
(train e = 0.5)

Robust ensemble 
(8 models, train e = 0.22)

Natural test 94.6% 88.3% 94.0%

Adv. Test 
(e = 0.5, k = 7)

0.4% 68.7% 68.8%

AUC(0.5) w/4 
increments

0.067 0.767 0.781
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Number of 
models
(train e = 0.5) 

Natural 
accuracy

Adversarial
accuracy
(e = 0.5)

1 88.30% 68.73%

2 88.92% 71.19%

4 89.07% 72.53%

8 89.36% 73.08%

12 89.28% 73.34%

16 89.18% 73.37%



Composite ensembling
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Strong

Robust

Weak



Composite ensembling
Extract Last Layers
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Strong

Robust

Weak



Composite ensembling

Robust

Strong

Robust

Weak

Replicate Last Robust Layer
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Composite ensembling
Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently
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Robust

Strong

Robust

Weak



Composite ensembling?
Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently

p1

p2

Composite prediction = 
ensemble weighted average

Composite acc. ≥ single 
robust model acc.
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Composite ensembling: Results
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Single non-
robust 
model

Single
robust model
(train e = 0.5)

Robust ensemble 
(8 models, train e = 
0.22)

1-composite
(train e = 0.4, 0.05
trained at e = 0.4)

Natural test 94.6% 88.3% 94.0% 91.4%

Adv. Test 
(e = 0.5, k = 7)

0.4% 68.7% 68.8% 68.0%

AUC(0.5) w/4 
increments

0.067 0.767 0.781 0.769



Meta-composite ensembling

Robust

Natural

p1

p2

Take many composite 
ensembles
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Meta-composite ensembling

Aditya Saligrama 9.5th Annual MIT PRIMES Conference

p1

p2

Meta Composite prediction = 
ensemble of composites

Composite 1

Composite 2

October 20, 2019



Meta-composite ensembling
• Combine M independently trained composite models
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Single non-
robust 
model

Single
robust model
(train e = 0.5)

Robust ensemble 
(8 models, 
train e = 0.22)

1-composite
(train e = 0.4, 0.05
trained at e = 0.4)

2x 1-composite
Weighted average

Natural test 94.6% 88.3% 94.0% 91.4% 91.6%

Adv. Test 
(e = 0.5, k = 
7)

0.4% 68.7% 68.8% 68.0% 70.0%

AUC(0.5) 
w/4 
increments

0.067 0.767 0.781 0.769 0.783



Key insights and Conclusions
• AUC metric to evaluate robustness of models

• Allows us to assess robustness at multiple attack strengths

• Robust ensembling outperforms single models
• Choosing models randomly forces adversary to use average strategy

• Different models may mispredict the same way, but require different perturbations

• Allows us to decrease train e, therefore increasing natural accuracy at a given level of robustness

• Proposed composite and meta-composite models
• Re-incorporate non-robust features

• Improves on AUC metric compared to single models while using less models than robust 
ensembling
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Future work
• Validation with other adversarial attacks such as Carlini-Wagner (Carlini and Wagner 2017)

• Use meta-composite framework to improve natural accuracy outside adversarial context

Aditya Saligrama 10th Annual MIT PRIMES Conference June 7, 2020



Acknowledgements
• Guillaume Leclerc and Prof. Aleksander Mądry

• Logan Engstrom, Andrew Ilyas, and the rest of Mądry Lab

• Dr. Slava Gerovitch and Prof. Srini Devadas, for supporting the PRIMES program and this 
research

Aditya Saligrama 10th Annual MIT PRIMES Conference June 7, 2020


