Revisiting Ensembles in an Adversarial Context: Improving Natural Accuracy

Aditya Saligrama

Mentors: Guillaume Leclerc, Prof. Alexander Madry (MIT CSAIL Theory of Computing)

10th Annual MIT PRIMES Conference

June 7, 2020

Deep learning and adversarial examples

Aditya Saligrama

10th Annual MIT PRIMES Conference

June 7, 2020

Deep learning

• Has become ubiquitous in the last few years and can outperform humans on some tasks

(DeepAl 2019)

(Karpathy 2015)

Adversarial attacks

- Modify image in a set *S*, such as L2-ball of size ε, to maximize loss *L*
 - Imperceptible to human observer
 - Fools deep learning models

 $\hat{\delta} = \underset{||\delta|| < \epsilon}{\operatorname{argmax}} L(\theta, x + \delta, y)$

(Mądry and Schmidt 2018)

10th Annual MIT PRIMES Conference

Adversarial attacks

- Modify image in a set *S*, such as L2-ball of size ε, to maximize loss *L*
 - Imperceptible to human observer
 - Fools deep learning models
- Many ways of synthesizing adversarial examples:
 - Such as PGD projected gradient descent (Mądry et al. 2017)

"airliner"

(Mądry and Schmidt 2018)

Aditya Saligrama

10th Annual MIT PRIMES Conference

Robust training

- Train robust model θ on dataset *D*:
 - Resistant to adversarial attacks
 - Robust training via PGD (Mądry et al. 2017)
 - Many other ways...

Robust training

- Train robust model θ on dataset *D*:
 - Resistant to adversarial attacks
 - Robust training via PGD (Mądry et al. 2017)
 - Many other ways...

	Natural train	Robust train (ε=0.5)
Natural test		
Adv. test (ε=0.5)		

Robust training

- Train robust model θ on dataset *D*:
 - Resistant to adversarial attacks
 - Robust training via PGD (Mądry et al. 2017)
 - Many other ways...

ResNet18 models (He et al. 2015) trained on CIFAR10

	Natural train	Robust train (ε=0.5)
Natural test	95%	88%
Adv. test (ε=0.5)	0%	69%

Metrics

- Assess resistance to adversarial attacks at multiple attack strengths
 - Adversary can choose any arbitrary attack strength against deployed model
- We define AUC metric as

$$AUC(\epsilon_{target}) = \frac{1}{\epsilon_{target}} \int_{0}^{\epsilon_{target}} \mathcal{A}(\epsilon) d\epsilon.$$

- In practice, evaluate as a Riemann sum
- Use this metric in addition to assessing accuracy at defined attack strengths

Ensembling schemes

Aditya Saligrama

10th Annual MIT PRIMES Conference

June 7, 2020

Adversarial ensembling

<u>Using ensembling for training (lots of prior work, different from previous slide):</u>

- Vanilla ensembling (baseline for this talk)
 - Random initializations, train M standard models
- Ensemble Adversarial Training (Tramèr et al. 2017)
 - Collect adversarial examples from multiple models
 - Transfer examples to train single model
- Ensemble diversity (Pang et al. 2019)
 - Coupled training of all *M* models to promote diversity

	Robust training (Mądry et al. 2017)	Vanilla ensembling	Ensemble diversity (Pang et al. 2019)
Natural test	88%	94%	93%
Adv. test	69% (ε=0.5)	0%	30% (ε=0.02)

Our proposed methods

Aditya Saligrama

10th Annual MIT PRIMES Conference

June 7, 2020

Robust ensembling

- Train *M* independent models robustly
 - *i*'th model with seed *i*

$$\widehat{\theta}_{i} = \operatorname*{argmin}_{\theta} E_{(x,y)\sim D} [\max_{||\delta|| \le \epsilon} L(\theta, x + \delta, y)]$$

Robust training with initialization seed i

$$c(x, \theta, \pi) = \max_{y} \sum_{i=1}^{M} \pi_i \theta_i(x, y)$$

 $\theta_i(x, y)$: model *i*'s probability of class *y* on instance *x*

Aditya Saligrama

10th Annual MIT PRIMES Conference

How to understand ensembles?

Value of the game (discrete):Adversary
strategy θ_1 θ_2 θ_3 • Player: random strategy over M models
• Probability $\pi_1 \dots \pi_M$ strategy δ_1 Loss δ_1 • Adversary: perturbation $\delta_1 \dots \delta_S$ ($S \to \infty$) with probability $q_1 \dots q_S$
 $\ell(\mathbf{q}, \pi, L) = E_{\delta \sim \mathbf{q}} E_{\theta_j \sim \pi} L(\theta_j, x + \delta, y)$ δ_3 δ_3 δ_3

Key point: Adversary plays against ensemble rather than single model for each instance $\min_{\pi} \max_{\mathbf{q}} \ell(\mathbf{q}, \pi, L) \leq \max_{\delta} \frac{1}{M} \sum_{j} L(\theta_j, x + \delta, y)$ VS. $\max_{\delta \in S} L(\theta, x + \delta, y)$

How to understand ensembles?

Value of the game (discrete):

- Player: random strategy over *M* models
 - Probability $\pi_1 \dots \pi_M$
- Adversary: perturbation $\delta_1 \dots \delta_S (S \to \infty)$ with probability $q_1 \dots q_S$

 $\ell(\mathbf{q}, \pi, L) = E_{\delta \sim \mathbf{q}} E_{\theta_i \sim \pi} L(\theta_i, x + \delta, y)$

Player strategy θ_1 θ_2 Adversary strategy δ_1 Loss δ_2 δ_3

Key point: Adversary plays against ensemble rather than single model for each instance $\min_{\pi} \max_{\mathbf{q}} \ell(\mathbf{q}, \pi, L) \leq \max_{\delta} \frac{1}{M} \sum_{j} L(\theta_j, x + \delta, y)$

VS.

$$\max_{\delta \in S} L(\theta, x + \delta, y)$$

robust ensemble loss \leq single robust model loss Why? Choose **q** to focus on single model

This allows accuracy to increase per model in the ensemble for a given ϵ

 θ_3

Robust and non-robust features

- Images comprised of robust and non-robust features (Ilyas et al. 2019)
- Key insight 1: Robust features do not have enough info about particular instances
 - Non-robust features contain remaining info

Robust features

Robust Correlated even with	features I with label adversary	Non-robust feat el Correlated with label c y but can be flipped wit			s verage, ℓ₂ ball
Eyes	Gills		Ŧ	8	
		Input		(Eng	strom et al. 2019)

Robust + non-robust features

Robust and non-robust features

- Images comprised of robust and non-robust features (Ilyas et al. 2019)
 - Training at lower ε means less resistance to non-robust features and better natural accuracy
- Key insight 1: Robust features do not have enough info about particular instances
 - Non-robust features contain remaining info
 - Objective: Augment non-robust features with robust features without losing robustness
- Key insight 2: Lower train ϵ confers better natural accuracy at the cost of robustness
 - Objective: Combine with ensembling to maintain robustness with better natural accuracy

Robust features

Correlated with label even with adversary

Non-robust features

Correlated with label on average, but can be flipped within ℓ_2 ball

Robust + non-robust features

Aditya Saligrama

Robust ensembling: Results

Number of models (train ε = 0.5)	Natural accuracy	Adversarial accuracy (ε = 0.5)		Single non- robust model	Single robust model (train ε = 0.5)	Robust ensemble (8 models, train ε = 0.22)
1	88.30%	68.73%	Natural test	94.6%	88.3%	94 0%
2	88.92%	71.19%		0 10/0	00.370	0 1.0 /0
4	89.07%	72.53%	Adv. Test (ε = 0.5, k = 7)	0.4%	68.7%	68.8%
8	89.36%	73.08%	AUC(0.5) w/4	0.067	0.767	0.781
12	89.28%	73.34%	increments			
16	89.18%	73.37%				

output layer

Robust Weak

Aditya Saligrama

Weak

Aditya Saligrama

Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently

Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently

Composite prediction = ensemble weighted average

Composite acc. \geq single robust model acc.

Composite ensembling: Results

	Single non- robust model	Single robust model (train ε = 0.5)	Robust ensemble (8 models, train ε = 0.22)	1-composite (train ε = 0.4, 0.05 trained at ε = 0.4)
Natural test	94.6%	88.3%	94.0%	91.4%
Adv. Test (ε = 0.5, k = 7)	0.4%	68.7%	68.8%	68.0%
AUC(0.5) w/4 increments	0.067	0.767	0.781	0.769

Meta-composite ensembling

Aditya Saligrama

10th Annual MIT PRIMES Conference

Meta-composite ensembling

9.5th Annual MIT PRIMES Conference

Meta-composite ensembling

• Combine *M* independently trained composite models

	Single non- robust model	Single robust model (train ε = 0.5)	Robust ensemble (8 models, train ε = 0.22)	1-composite (train ε = 0.4, 0.05 trained at ε = 0.4)	2x 1-composite Weighted average
Natural test	94.6%	88.3%	94.0%	91.4%	91.6%
Adv. Test (ε = 0.5, k = 7)	0.4%	68.7%	68.8%	68.0%	70.0%
AUC(0.5) w/4 increments	0.067	0.767	0.781	0.769	0.783

Key insights and Conclusions

- AUC metric to evaluate robustness of models
 - Allows us to assess robustness at multiple attack strengths
- Robust ensembling outperforms single models
 - Choosing models randomly forces adversary to use average strategy
 - Different models may mispredict the same way, but require different perturbations
 - Allows us to decrease train ε, therefore increasing natural accuracy at a given level of robustness
- Proposed composite and meta-composite models
 - Re-incorporate non-robust features
 - Improves on AUC metric compared to single models while using less models than robust ensembling

Future work

- Validation with other adversarial attacks such as Carlini-Wagner (Carlini and Wagner 2017)
- Use meta-composite framework to improve natural accuracy outside adversarial context

Acknowledgements

- Guillaume Leclerc and Prof. Aleksander Mądry
- Logan Engstrom, Andrew Ilyas, and the rest of Mądry Lab
- Dr. Slava Gerovitch and Prof. Srini Devadas, for supporting the PRIMES program and this research