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Deep learning and
adversarial examples




Deep learning

* Has become ubiquitous in the last few years and can outperform humans on some tasks
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What the computer sees

. 82% cat

15% dog
2% hat
1% mug

image classification

(Karpathy 2015)

June 77,2020




Adversarial attacks

* Modify image in a set S, such as L2-ball of size g, to maximize loss L 5 = argmaxL(6,x + §,y)
* Imperceptible to human observer 15]|<e

* Fools deep learning models

“airliner”

(Madry and Schmidt 2018)
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Adversarial attacks

* Modify image in a set S, such as L2-ball of size €, to maximize loss L
* Imperceptible to human observer

* Fools deep learning models

* Many ways of synthesizing adversarial examples:
* Such as PGD - projected gradient descent (Madry et al. 2017)

Aditya Saligrama 10th Annual MIT PRIMES Conference

5 = argmax L(6,x + §,y)
161]<e

(Madry and Schmidt 2018)
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Robust training

e Train robust model O on dataset D: é‘ — aromin E max L(6 x + &
* Resistant to adversarial attacks 9g (x,y)~D [||5||S€ ( ’ 'y)]

* Robust training via PGD (Madry et al. 2017) ~— Newtainingdata

Many other ways... LEEEDEET
NEmsaPuEon
il 0 2 T I i e
SEE*RRITw
AErESNERE S
FENEN S =
REANTEED .=

Training dataset

O EEEEEE——

;.

Neural network

Perturbation Model parameters

Adversary Diagram adapted from Bhat (2018)

Aditya Saligrama 10th Annual MIT PRIMES Conference June 7,2020



Robust training

e Train robust model O on dataset D: é‘ — aromin E max L(6 x + &
* Resistant to adversarial attacks 9g (x,y)~D [||5||S€ ( ’ 'y)]

* Robust training via PGD (Madry et al. 2017) ~— Newtainingdata

Many other ways... LEEEDEET
NEmsaPuEon
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SEE*RRITw
AErESNERE S
FENEN S =
REANTEED .=

Training dataset

O EEEEEE——

7.
Neural network

ResNet18 models (He et al. 2015)
trained on CIFAR10 Perturbation Model parameters

_ Natural train Robust train Adversary Diagram adapted from Bhat (2018)
(€=0.5)

Natural test
Adv. test (¢=0.5)
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Robust training

e Train robust model O on dataset D: é‘ — aromin E max L(6 x + &
* Resistant to adversarial attacks 9g (x,y)~D [||5||S€ ( ’ 'y)]

* Robust training via PGD (Madry et al. 2017) ~— Newtainingdata

Many other ways... LEEEDEET
NEmsaPuEon
il 0 2 T I i e
SEE*RRITw
AErESNERE S
FENEN S =
REANTEED .=

Training dataset

O EEEEEE——

:;;j‘.
Neural network

ResNet18 models (He et al. 2015)

trained on CIFAR10 Perturbation Model parameters
_ Robust train ssgrom dapted fom sha 2018
(e=0.5)
Natural test 95% 88%
Adv. test (¢=0.5) 0% 69%
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Metrics

Assess resistance to adversarial attacks at multiple attack strengths
* Adversary can choose any arbitrary attack strength against deployed model

We define AUC metric as

AVC(Carge) = —— [ Ayde
0

Et-r:l.]"_r;-ﬂf-

In practice, evaluate as a Riemann sum

Use this metric in addition to assessing accuracy at defined attack strengths
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Ensembling schemes
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Adversarial ensembling

Using ensembling for training (lots of prior work, different from previous slide):

* Vanilla ensembling (baseline for this talk)
* Random initializations, train M standard models

« Ensemble Adversarial Training (Trameér et al. 2017)
* Collect adversarial examples from multiple models
* Transfer examples to train single model

« Ensemble diversity (Pang et al. 2019)
* Coupled training of all M models to promote diversity

Robust training Vanilla ensembling | Ensemble diversity (Pang et al. 2019)
(Madry et al. 2017)

Natural test 88% 94% 93%
Adv. test 69% (¢=0.5) 0% 30% (£=0.02)
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Our proposed methods




Robust ensembling

* Train Mindependent models robustly g, = argmin E(xy)~p [max L(6,x + &,y)]
* j’th model with seed i 2] ’ 161|<e
~ Robust training with initialization seed |
Robust
model gL
0, )
~ M
Robust c(x,0,w) = maxz m;0;(x,y)
model R y
6,
J ‘ 0;(x,y): model /’s probability
of class y on instance x
Robust
model Ty
eM
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How to understand ensembles?

> Player strategy

Value of the game (discrete): Adversary --n-

* Player: random strategy over M models strategy Loss
* Probability my ... my,
» Adversary: perturbation §; ... 65 (S = o) with probability q; ... g5

02

f(q, T, L) — E5NqE9jN7rL(9ja T+ 67 y)
03

Key point: Adversary plays against ensemble rather than single
model for each instance

min, maxq ¢(q, 7, L) < max; ﬁ Zj L(0j,x+9,y)
VS.
max LB, x+6,y)
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How to understand ensembles?

Value of the game (discrete):
* Player: random strategy over M models
* Probability my ... my,

* Adversary: perturbation §; ... 65 (S — o) with probability q; ...

f(q, T, L) — E5NqE9jN7rL(9ja T+ 67 y)

Adversary --n“

> Player strategy

Strategy LOSS

ds

Key point: Adversary plays against ensemble rather than single
model for each instance

min, maxq ¢(q, 7, L) < max; ﬁ Zj L(0j,x+9,y)
VS.
max LB, x+6,y)

02

03

robust ensemble loss < single robust model loss
Why? Choose q to focus on single model

This allows accuracy to increase per modelin
the ensemble for a given ¢
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Robust and non-robust features

* Images comprised of robust and non-robust features (llyas et al. 2019)

* Key insight 1: Robust features do not have enough info about particular instances
* Non-robust features contain remaining info

Robust + non-robust
Robust features Non-robust features features
Correlated with label Correlated with label on average,
even with adversary but can be flipped within £ ball

Robust features

Eyes Gills

Input (Engstrom et al. 2019)
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Robust and non-robust features

* Images comprised of robust and non-robust features (llyas et al. 2019)
* Training at lower € means less resistance to non-robust features and better natural accuracy

* Key insight 1: Robust features do not have enough info about particular instances
* Non-robust features contain remaining info

* Objective: Augment non-robust features with robust features without losing robustness

* Key insight 2: Lower train ¢ confers better natural accuracy at the cost of robustness
* Objective: Combine with ensembling to maintain robustness with better natural accuracy

Robust features Robust + non-robust features

Robust features Non-robust features
Correlated with label ~ Correlated with label on average,
even with adversary but can be flipped within £; ball

Eyes Gills

|nput (Engstrom et al. 2019)
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Robust ensembling: Results

Numberof | Natural Adversarial Single non- | Single Robust ensemble
TELES accuracy accuracy robust model | robust model | (8 models, train € =0.22)
(train € =0.5) (e =0.5) (train & = 0.5)
1 88.30% 68.73%
Natural test 94.6% 88.3% 94.0%
2 88.92% 71.19%
Adv. Test 0.4% 68.7% 68.8%
4 89.07% 72.53% (€=0.5,k=7)
8 89.36% 73.08% AUC(0.5)w/4  0.067 0.767 0.781
12 89.28% 73.34% increments
16 89.18% 73.37%
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Robust
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Composite ensembling
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Composite ensembling

Extract Last Layers

-a il
Robust B
Strong TS
||
"mm
Robust
Weak

Aditya Saligrama 10th Annual MIT PRIMES Conference June 7,2020




Composite ensembling

Replicate Last Robust Layer
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Composite ensembling

Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently
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Composite ensembling?

Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently
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Composite ensembling: Results

Single non- | Single Robust ensemble 1-composite
robust robust model | (8 models, train € = (train € =0.4, 0.05
model (traine=0.5) |0.22) trained at £ =0.4)
Naturaltest  94.6% 88.3% 94.0% 91.4%
Adv. Test 0.4% 68.7% 68.8% 68.0%
(€=0.5k=7)
AUC(0.5) w/4 0.067 0.767 0.781 0.769
increments
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Meta-composite ensembling

e anl T
i Robust = i
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Meta-composite ensembling

Robust

Composite 1

Natural

Meta Composite prediction =
‘ ensemble of composites

Robust

Composite 2

Natural
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Meta-composite ensembling

* Combine M independently trained composite models

Single non- | Single Robust ensemble 1-composite 2x 1-composite
robust robust model | (8 models, (train e =0.4,0.05 | Weighted average
model (traine€ =0.5) | traine=0.22) trained at € =0.4)

Naturaltest 94.6% 88.3% 94.0% 91.4% 91.6%

Adv. Test 0.4% 68.7% 68.8% 68.0% 70.0%

(€=0.5,k=

7)

AUC(0.5) 0.067 0.767 0.781 0.769 0.783

w/4

increments
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Key insights and Conclusions

* AUC metric to evaluate robustness of models
 Allows us to assess robustness at multiple attack strengths

* Robust ensembling outperforms single models
* Choosing models randomly forces adversary to use average strategy

 Different models may mispredict the same way, but require different perturbations
 Allows us to decrease train g, therefore increasing natural accuracy at a given level of robustness

* Proposed composite and meta-composite models
* Re-incorporate non-robust features

* Improves on AUC metric compared to single models while using less models than robust
ensembling
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Future work

» Validation with other adversarial attacks such as Carlini-Wagner (Carlini and Wagner 2017)

« Use meta-composite framework to improve natural accuracy outside adversarial context
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