Upho Posets

Joshua Guo, Karthik Seetharaman, and Ilaria Seidel

Mentored by Yibo Gao

2020 MIT PRIMES Conference

October 18, 2020

A **poset** is a set with an ordering, denoted \leq , that is transitive, reflexive, and antisymmetric.

A **poset** is a set with an ordering, denoted \leq , that is transitive, reflexive, and antisymmetric.

Example

① The set of natural numbers with the standard ordering \leq

A **poset** is a set with an ordering, denoted \leq , that is transitive, reflexive, and antisymmetric.

- **①** The set of natural numbers with the standard ordering \leq
- **2** The set of natural numbers with $a \leq b$ if a|b|

A **poset** is a set with an ordering, denoted \leq , that is transitive, reflexive, and antisymmetric.

- **①** The set of natural numbers with the standard ordering \leq
- **2** The set of natural numbers with $a \leq b$ if a|b|
- 0 The set of subsets of a set S ordered by inclusion

A **poset** is a set with an ordering, denoted \leq , that is transitive, reflexive, and antisymmetric.

- **①** The set of natural numbers with the standard ordering \leq
- **2** The set of natural numbers with $a \leq b$ if a|b

In a poset P and elements $x, y \in P$, y covers x, denoted x < y, if x < y and there does not exist $z \in P$ with x < z < y.

In a poset P and elements $x, y \in P$, y covers x, denoted x < y, if x < y and there does not exist $z \in P$ with x < z < y.

Definition

A poset P is **ranked** if $P = P_0 \sqcup P_1 \sqcup P_2 \sqcup \ldots$, such that if $x \in P_i$ and $x \lessdot y$, then $y \in P_{i+1}$.

In a poset P and elements $x, y \in P$, y covers x, denoted x < y, if x < y and there does not exist $z \in P$ with x < z < y.

Definition

A poset P is **ranked** if $P = P_0 \sqcup P_1 \sqcup P_2 \sqcup \ldots$, such that if $x \in P_i$ and $x \lessdot y$, then $y \in P_{i+1}$.

Definition

The **rank-generating function** of a ranked poset P is

$$F_P(x) = |P_0| + |P_1|x + |P_2|x^2 + \ldots = \sum_{k=0}^{\infty} |P_k|x^k.$$

The Upper Principal Order Filter

Definition

The **upper principal order filter** above an element $s \in P$ is "s and everything above it": $V_{P,s} := \{t \in P \mid t \geq s\}.$

The Upper Principal Order Filter

Definition

The **upper principal order filter** above an element $s \in P$ is "s and everything above it": $V_{P,s} := \{t \in P \mid t \geq s\}.$

5/23

Defining Upho Posets

Definition (Stanley, 2020)

A poset P is **upho** if the upper principal order filter $V_{P,s} \cong P$ for all $s \in P$.

Defining Upho Posets

Definition (Stanley, 2020)

A poset P is **upho** if the upper principal order filter $V_{P,s} \cong P$ for all $s \in P$.

Upho Posets

We will discuss three topics as they relate to upho posets:

- Schur-positivity of the Ehrenborg quasisymmetric function
- Planar upho posets
- Uncomputable rank-generating functions

For any ranked poset P of finite type with a unique minimal element, define its **Ehrenborg quasisymmetric function** of degree n to be

$$E_{P,n}(x_1, x_2, \dots, x_k) := \sum_{\substack{\hat{0}=t_0 \le t_1 \le \dots \le t_{k-1} < t_k\\\rho(t_k)=n}} x_1^{\rho(t_0, t_1)} x_2^{\rho(t_1, t_2)} \cdots x_k^{\rho(t_{k-1}, t_k)}$$

where $\rho(t_i, t_{i+1}) = \rho(t_{i+1}) - \rho(t_i)$ and $\rho(t_i)$ is the rank of t_i . We also write $E_P := \sum_{n \ge 0} E_{P,n}$.

For any ranked poset P of finite type with a unique minimal element, define its **Ehrenborg quasisymmetric function** of degree n to be

$$E_{P,n}(x_1, x_2, \dots, x_k) := \sum_{\substack{\hat{0}=t_0 \le t_1 \le \dots \le t_{k-1} < t_k\\\rho(t_k)=n}} x_1^{\rho(t_0, t_1)} x_2^{\rho(t_1, t_2)} \cdots x_k^{\rho(t_{k-1}, t_k)}$$

where $\rho(t_i, t_{i+1}) = \rho(t_{i+1}) - \rho(t_i)$ and $\rho(t_i)$ is the rank of t_i . We also write $E_P := \sum_{n \ge 0} E_{P,n}$.

Lemma

Let P be upho. Then E_P is a symmetric function. Moreover,

$$E_P(x_1, x_2, \ldots) = F_P(x_1)F_P(x_2)\cdots$$

Theorem (Davydov, 2000)

An integral series $f(t) \in 1 + t\mathbb{Z}[[t]]$ is totally positive, i.e. $f(t_1)f(t_2)\cdots$ is Schur positive, if and only if it is of the form f(t) = g(t)/h(t) where $g(t), h(t) \in \mathbb{Z}[t]$ such that all the complex roots of g(t) are negative real numbers and all the complex roots of h(t) are positive real numbers.

Theorem

Given positive integers a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_m , there exists an upho poset P with rank-generating function

$$\frac{(1+a_1x)(1+a_2x)\cdots(1+a_nx)}{(1-b_1x)(1-b_2x)\cdots(1-b_mx)}.$$

We will prove the following lemma:

Lemma

Given positive integers a_1, a_2, \ldots, a_n , there exists an upho poset Q with rank-generating function

$$F_Q(x) = \frac{(1+a_1x)(1+a_2x)\dots(1+a_nx)}{1-x}.$$

•
$$S = \{(y_1, y_2, \dots, y_n) \mid 0 \le y_i \le a_i \text{ for all } 1 \le i \le n\}.$$

- $S = \{(y_1, y_2, \dots, y_n) \mid 0 \le y_i \le a_i \text{ for all } 1 \le i \le n\}.$
- Define a poset P with elements of S, and write elements of P as $(y_1, \ldots, y_n; k)$, where k is the rank of the element.

- $S = \{(y_1, y_2, \dots, y_n) \mid 0 \le y_i \le a_i \text{ for all } 1 \le i \le n\}.$
- Define a poset P with elements of S, and write elements of P as $(y_1, \ldots, y_n; k)$, where k is the rank of the element.
- Rank 0 consists of $(0, \ldots, 0; 0)$, and

 $(y_1, y_2, \ldots, y_n; k) \leq (z_1, z_2, \ldots, z_n; k+1)$ if the two differ in at most one coordinate.

- $S = \{(y_1, y_2, \dots, y_n) \mid 0 \le y_i \le a_i \text{ for all } 1 \le i \le n\}.$
- Define a poset P with elements of S, and write elements of P as $(y_1, \ldots, y_n; k)$, where k is the rank of the element.
- Rank 0 consists of $(0, \ldots, 0; 0)$, and $(y_1, y_2, \ldots, y_n; k) \leq (z_1, z_2, \ldots, z_n; k+1)$ if the two differ in at most one coordinate.

We have constructed upho posets with rank-generating function

$$\frac{(1+a_1x)(1+a_2x)\cdots(1+a_nx)}{1-x}.$$

We want to extend this to

$$\frac{(1+a_1x)(1+a_2x)\cdots(1+a_nx)}{(1-b_1x)(1-b_2x)\cdots(1-b_mx)}.$$

We have constructed upho posets with rank-generating function

$$\frac{(1+a_1x)(1+a_2x)\cdots(1+a_nx)}{1-x}$$

We want to extend this to

$$\frac{(1+a_1x)(1+a_2x)\cdots(1+a_nx)}{(1-b_1x)(1-b_2x)\cdots(1-b_mx)}.$$

Proof.

• Extend the lemma to denominator 1 - bx for $b \in \mathbb{Z}^+$.

We have constructed upho posets with rank-generating function

$$\frac{(1+a_1x)(1+a_2x)\cdots(1+a_nx)}{1-x}$$

We want to extend this to

$$\frac{(1+a_1x)(1+a_2x)\cdots(1+a_nx)}{(1-b_1x)(1-b_2x)\cdots(1-b_mx)}.$$

Proof.

- Extend the lemma to denominator 1 bx for $b \in \mathbb{Z}^+$.
- 2 If P and Q are upho, $P \times Q$ is upho with $F_{P \times Q} = F_P F_Q$.

We have constructed upho posets with rank-generating function

$$\frac{(1+a_1x)(1+a_2x)\cdots(1+a_nx)}{1-x}$$

We want to extend this to

$$\frac{(1+a_1x)(1+a_2x)\cdots(1+a_nx)}{(1-b_1x)(1-b_2x)\cdots(1-b_mx)}.$$

Proof.

- Extend the lemma to denominator 1 bx for $b \in \mathbb{Z}^+$.
- 2 If P and Q are upho, $P \times Q$ is upho with $F_{P \times Q} = F_P F_Q$.
- Multiply by c-trees with rank-generating function $1 + cx + c^2x^2 + \ldots = \frac{1}{1 cx}.$

A ranked poset P is **planar** if there exists a Hasse diagram of P such that every element on rank i of P is at y-coordinate i and no two edges of the Hasse diagram intersect.

Planarity

Definition

A ranked poset P is **planar** if there exists a Hasse diagram of P such that every element on rank i of P is at y-coordinate i and no two edges of the Hasse diagram intersect.

Theorem

The rank-generating function of any planar upho poset P with up-degree b is of the form

$$\frac{1}{Q(x)} = \frac{1}{1 - bx + a_2x^2 + a_3x^3 + \dots + a_nx^n}$$

such that $b, a_1, a_2, \ldots, a_n \in \mathbb{Z}_{\geq 0}$ and $Q(1) \leq 0$. Furthermore, any such function $Q^{-1}(X)$ is realized by some planar upho poset.

An element v of a planar upho poset is called **root-bifurcated** if it covers exactly 2 adjacent elements with greatest lower bound $\hat{0}$.

Definition

An element v of a planar up to poset is called **bifurcated** if it covers exactly 2 adjacent elements that do not have greatest lower bound $\hat{0}$.

Definition

An element v of a poset is an **atom** if it covers $\hat{0}$.

Proof.

Joshua,	Karthik,	Ilaria
---------	----------	--------

Proof.

• If v is root-bifurcated, then v is greater than exactly two atoms p, q, and p and q are adjacent.

Proof.

- If v is root-bifurcated, then v is greater than exactly two atoms p, q, and p and q are adjacent.
- **2** There are $\leq b 1$ root-bifurcated elements in a poset with up-degree b.

Proof.

- If v is root-bifurcated, then v is greater than exactly two atoms p, q, and p and q are adjacent.
- **2** There are $\leq b 1$ root-bifurcated elements in a poset with up-degree b.
- If a_i is the number of root-bifurcated elements on rank *i*, then show that the rank-generating function of a planar poset *P* with up-degree *b* is

$$\left(1 - bx + \sum_{j=2}^{\infty} a_j x^j\right)^{-1}$$

A function is **uncomputable** if there does not exist an algorithm to compute it.

A function is **uncomputable** if there does not exist an algorithm to compute it.

Theorem

There exists an upho poset with uncomputable rank-generating function.

A **monoid** is a set that is closed under an associative binary operation and an identity element.

• Alphabet $\Sigma = \{a_1, a_2, \dots, a_b\}$, homogeneous relations $b_1 b_2 \dots b_k = c_1 c_2 \dots c_k$ for $b_i, c_i \in \Sigma$ for all $1 \le i \le k$.

- Alphabet $\Sigma = \{a_1, a_2, \dots, a_b\}$, homogeneous relations $b_1 b_2 \dots b_k = c_1 c_2 \dots c_k$ for $b_i, c_i \in \Sigma$ for all $1 \le i \le k$.
- X = Y implies AXB = AYB, where A, B, X, and Y are strings of letters from Σ .

- Alphabet $\Sigma = \{a_1, a_2, \dots, a_b\}$, homogeneous relations $b_1 b_2 \dots b_k = c_1 c_2 \dots c_k$ for $b_i, c_i \in \Sigma$ for all $1 \le i \le k$.
- X = Y implies AXB = AYB, where A, B, X, and Y are strings of letters from Σ .
- Define a monoid M of finite strings of letters of Σ with the operation of concatenation.

- Alphabet $\Sigma = \{a_1, a_2, \dots, a_b\}$, homogeneous relations $b_1 b_2 \dots b_k = c_1 c_2 \dots c_k$ for $b_i, c_i \in \Sigma$ for all $1 \le i \le k$.
- X = Y implies AXB = AYB, where A, B, X, and Y are strings of letters from Σ .
- Define a monoid M of finite strings of letters of Σ with the operation of concatenation.
- Define a poset P consisting of elements of M with the order relation \leq , where $X \leq Y$ for $X, Y \in M$ if XA = Y for some $A \in M$.

Example

Stern's poset is defined by the alphabet $\{a, b, c\}$ and the relations ac = ba and bc = ca. Note, for example, that baa = aca = abc.

Example

A binary tree is defined by the alphabet $\{a, b\}$ and no relations.

Lemma

Take a monoid M and its associated poset P(M). Then, if AX = AY implies X = Y for all $A, X, Y \in M$, then P(M) is upho.

Lemma

Take a monoid M and its associated poset P(M). Then, if AX = AY implies X = Y for all $A, X, Y \in M$, then P(M) is upho.

Proof.

- $BX \leq BY$ if and only if $X \leq Y$, so the map $\iota : X \to BX$ is a homomorphism from P to V_B .
- **2** ι is also a bijection.
- Thus, $V_B \cong P$ as desired.

Proof.

• Find an infinite set of relations S on an alphabet $\{L, R\}$:

LRLRLL = RRLLRLLRLRLRLL = RRLLLLRLLRLRLRLRLL = RRLLLLLLRL

. . .

such that every poset defined by any subset of S is up to and has *distinct* rank-generating function.

Proof.

• Find an infinite set of relations S on an alphabet $\{L, R\}$:

LRLRLL = RRLLRLLRLRLRLL = RRLLLLRLLRLRLRLRLL = RRLLLLLLRL

. . .

such that every poset defined by any subset of S is up to and has *distinct* rank-generating function.

This set of posets has an uncountably infinite number of different rank-generating functions.

Proof.

• Find an infinite set of relations S on an alphabet $\{L, R\}$:

LRLRLL = RRLLRLLRLRLRLL = RRLLLLRLLRLRLRLRLL = RRLLLLLLRL

. . .

such that every poset defined by any subset of S is up to and has *distinct* rank-generating function.

- This set of posets has an uncountably infinite number of different rank-generating functions.
- There are a countably infinite number of computable rank generating functions (Sipser, 1996).

We would like to thank:

- Yibo Gao
- Prof. Richard Stanley
- The MIT PRIMES program