Upho Posets

Joshua Guo, Karthik Seetharaman, and Ilaria Seidel
Mentored by Yibo Gao
2020 MIT PRIMES Conference

October 18, 2020

Preliminaries

Definition

A poset is a set with an ordering, denoted \leq, that is transitive, reflexive, and antisymmetric.

Preliminaries

Definition

A poset is a set with an ordering, denoted \leq, that is transitive, reflexive, and antisymmetric.

Example

(1) The set of natural numbers with the standard ordering \leq

Preliminaries

Definition

A poset is a set with an ordering, denoted \leq, that is transitive, reflexive, and antisymmetric.

Example

(1) The set of natural numbers with the standard ordering \leq
(2) The set of natural numbers with $a \leq b$ if $a \mid b$

Preliminaries

Definition

A poset is a set with an ordering, denoted \leq, that is transitive, reflexive, and antisymmetric.

Example

(1) The set of natural numbers with the standard ordering \leq
(2 The set of natural numbers with $a \leq b$ if $a \mid b$
(3) The set of subsets of a set S ordered by inclusion

Preliminaries

Definition

A poset is a set with an ordering, denoted \leq, that is transitive, reflexive, and antisymmetric.

Example

(1) The set of natural numbers with the standard ordering \leq
(2 The set of natural numbers with $a \leq b$ if $a \mid b$
(3) The set of subsets of a set S ordered by inclusion

Preliminaries

Definition

In a poset P and elements $x, y \in P, y$ covers x, denoted $x \lessdot y$, if $x<y$ and there does not exist $z \in P$ with $x<z<y$.

Preliminaries

Definition

In a poset P and elements $x, y \in P, y$ covers x, denoted $x \lessdot y$, if $x<y$ and there does not exist $z \in P$ with $x<z<y$.

Definition

A poset P is ranked if $P=P_{0} \sqcup P_{1} \sqcup P_{2} \sqcup \ldots$, such that if $x \in P_{i}$ and $x \lessdot y$, then $y \in P_{i+1}$.

Preliminaries

Definition

In a poset P and elements $x, y \in P, y$ covers x, denoted $x \lessdot y$, if $x<y$ and there does not exist $z \in P$ with $x<z<y$.

Definition

A poset P is ranked if $P=P_{0} \sqcup P_{1} \sqcup P_{2} \sqcup \ldots$, such that if $x \in P_{i}$ and $x \lessdot y$, then $y \in P_{i+1}$.

Definition

The rank-generating function of a ranked poset P is

$$
F_{P}(x)=\left|P_{0}\right|+\left|P_{1}\right| x+\left|P_{2}\right| x^{2}+\ldots=\sum_{k=0}^{\infty}\left|P_{k}\right| x^{k}
$$

Example

Example

A 2-tree has rank-generating function $1+2 x+4 x^{2}+8 x^{3}+\ldots=\frac{1}{1-2 x}$.

The Upper Principal Order Filter

Definition

The upper principal order filter above an element $s \in P$ is " s and everything above it": $V_{P, s}:=\{t \in P \mid t \geq s\}$.

The Upper Principal Order Filter

Definition

The upper principal order filter above an element $s \in P$ is " s and everything above it": $V_{P, s}:=\{t \in P \mid t \geq s\}$.

Full Binary Tree

Poset consisting of 2-dimensional Cartesian coordinates

The Stern Poset

"Bowtie" Poset

Defining Upho Posets

Definition (Stanley, 2020)

A poset P is upho if the upper principal order filter $V_{P, s} \cong P$ for all $s \in P$.

Defining Upho Posets

Definition (Stanley, 2020)

A poset P is upho if the upper principal order filter $V_{P, s} \cong P$ for all $s \in P$.

Full Binary Tree

Poset consisting of 2-dimensional Cartesian coordinates

Overview

We will discuss three topics as they relate to upho posets:
(1) Schur-positivity of the Ehrenborg quasisymmetric function
(2) Planar upho posets
(3) Uncomputable rank-generating functions

The Ehrenborg Quasisymmetric Function

Definition

For any ranked poset P of finite type with a unique minimal element, define its Ehrenborg quasisymmetric function of degree n to be

$$
E_{P, n}\left(x_{1}, x_{2}, \ldots x_{k}\right):=\sum_{\substack{\hat{0}=t_{0} \leq t_{1} \leq \cdots \leq t_{k-1}<t_{k} \\ \rho\left(t_{k}\right)=n}} x_{1}^{\rho\left(t_{0}, t_{1}\right)} x_{2}^{\rho\left(t_{1}, t_{2}\right)} \cdots x_{k}^{\rho\left(t_{k-1}, t_{k}\right)}
$$

where $\rho\left(t_{i}, t_{i+1}\right)=\rho\left(t_{i+1}\right)-\rho\left(t_{i}\right)$ and $\rho\left(t_{i}\right)$ is the rank of t_{i}. We also write $E_{P}:=\sum_{n \geq 0} E_{P, n}$.

The Ehrenborg Quasisymmetric Function

Definition

For any ranked poset P of finite type with a unique minimal element, define its Ehrenborg quasisymmetric function of degree n to be

$$
E_{P, n}\left(x_{1}, x_{2}, \ldots x_{k}\right):=\sum_{\substack{\hat{0}=t_{0} \leq t_{1} \leq \cdots \leq t_{k-1}<t_{k} \\ \rho\left(t_{k}\right)=n}} x_{1}^{\rho\left(t_{0}, t_{1}\right)} x_{2}^{\rho\left(t_{1}, t_{2}\right)} \cdots x_{k}^{\rho\left(t_{k-1}, t_{k}\right)}
$$

where $\rho\left(t_{i}, t_{i+1}\right)=\rho\left(t_{i+1}\right)-\rho\left(t_{i}\right)$ and $\rho\left(t_{i}\right)$ is the rank of t_{i}. We also write $E_{P}:=\sum_{n \geq 0} E_{P, n}$.

Lemma

Let P be upho. Then E_{P} is a symmetric function. Moreover,

$$
E_{P}\left(x_{1}, x_{2}, \ldots\right)=F_{P}\left(x_{1}\right) F_{P}\left(x_{2}\right) \cdots .
$$

Criterion for Schur-Positivity

Theorem (Davydov, 2000)

An integral series $f(t) \in 1+t \mathbb{Z}[[t]]$ is totally positive, i.e. $f\left(t_{1}\right) f\left(t_{2}\right) \cdots$ is Schur positive, if and only if it is of the form $f(t)=g(t) / h(t)$ where $g(t), h(t) \in \mathbb{Z}[t]$ such that all the complex roots of $g(t)$ are negative real numbers and all the complex roots of $h(t)$ are positive real numbers.

A Family of Schur-Positive Upho Posets

Theorem

Given positive integers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{m}$, there exists an upho poset P with rank-generating function

$$
\frac{\left(1+a_{1} x\right)\left(1+a_{2} x\right) \cdots\left(1+a_{n} x\right)}{\left(1-b_{1} x\right)\left(1-b_{2} x\right) \cdots\left(1-b_{m} x\right)} .
$$

Proof of a Special Case

We will prove the following lemma:

Lemma

Given positive integers $a_{1}, a_{2}, \ldots, a_{n}$, there exists an upho poset Q with rank-generating function

$$
F_{Q}(x)=\frac{\left(1+a_{1} x\right)\left(1+a_{2} x\right) \ldots\left(1+a_{n} x\right)}{1-x} .
$$

Proof of a Special Case

- $S=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \mid 0 \leq y_{i} \leq a_{i}\right.$ for all $\left.1 \leq i \leq n\right\}$.

Proof of a Special Case

- $S=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \mid 0 \leq y_{i} \leq a_{i}\right.$ for all $\left.1 \leq i \leq n\right\}$.
- Define a poset P with elements of S, and write elements of P as ($y_{1}, \ldots, y_{n} ; k$), where k is the rank of the element.

Proof of a Special Case

- $S=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \mid 0 \leq y_{i} \leq a_{i}\right.$ for all $\left.1 \leq i \leq n\right\}$.
- Define a poset P with elements of S, and write elements of P as $\left(y_{1}, \ldots, y_{n} ; k\right)$, where k is the rank of the element.
- Rank 0 consists of $(0, \ldots, 0 ; 0)$, and $\left(y_{1}, y_{2}, \ldots, y_{n} ; k\right) \lessdot\left(z_{1}, z_{2}, \ldots, z_{n} ; k+1\right)$ if the two differ in at most one coordinate.

Proof of a Special Case

- $S=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \mid 0 \leq y_{i} \leq a_{i}\right.$ for all $\left.1 \leq i \leq n\right\}$.
- Define a poset P with elements of S, and write elements of P as $\left(y_{1}, \ldots, y_{n} ; k\right)$, where k is the rank of the element.
- Rank 0 consists of $(0, \ldots, 0 ; 0)$, and $\left(y_{1}, y_{2}, \ldots, y_{n} ; k\right) \lessdot\left(z_{1}, z_{2}, \ldots, z_{n} ; k+1\right)$ if the two differ in at most one coordinate.

Example

Let $a_{1}=1, a_{2}=2$. Then $\frac{(1+x)(1+2 x)}{1-x}=1+4 x+6 x^{2}+6 x^{3}+\cdots$.

Completing the Proof

We have constructed upho posets with rank-generating function

$$
\frac{\left(1+a_{1} x\right)\left(1+a_{2} x\right) \cdots\left(1+a_{n} x\right)}{1-x} .
$$

We want to extend this to

$$
\frac{\left(1+a_{1} x\right)\left(1+a_{2} x\right) \cdots\left(1+a_{n} x\right)}{\left(1-b_{1} x\right)\left(1-b_{2} x\right) \cdots\left(1-b_{m} x\right)} .
$$

Completing the Proof

We have constructed upho posets with rank-generating function

$$
\frac{\left(1+a_{1} x\right)\left(1+a_{2} x\right) \cdots\left(1+a_{n} x\right)}{1-x} .
$$

We want to extend this to

$$
\frac{\left(1+a_{1} x\right)\left(1+a_{2} x\right) \cdots\left(1+a_{n} x\right)}{\left(1-b_{1} x\right)\left(1-b_{2} x\right) \cdots\left(1-b_{m} x\right)} .
$$

Proof.

(1) Extend the lemma to denominator $1-b x$ for $b \in \mathbb{Z}^{+}$.

Completing the Proof

We have constructed upho posets with rank-generating function

$$
\frac{\left(1+a_{1} x\right)\left(1+a_{2} x\right) \cdots\left(1+a_{n} x\right)}{1-x} .
$$

We want to extend this to

$$
\frac{\left(1+a_{1} x\right)\left(1+a_{2} x\right) \cdots\left(1+a_{n} x\right)}{\left(1-b_{1} x\right)\left(1-b_{2} x\right) \cdots\left(1-b_{m} x\right)} .
$$

Proof.

(1) Extend the lemma to denominator $1-b x$ for $b \in \mathbb{Z}^{+}$.
(2) If P and Q are upho, $P \times Q$ is upho with $F_{P \times Q}=F_{P} F_{Q}$.

Completing the Proof

We have constructed upho posets with rank-generating function

$$
\frac{\left(1+a_{1} x\right)\left(1+a_{2} x\right) \cdots\left(1+a_{n} x\right)}{1-x} .
$$

We want to extend this to

$$
\frac{\left(1+a_{1} x\right)\left(1+a_{2} x\right) \cdots\left(1+a_{n} x\right)}{\left(1-b_{1} x\right)\left(1-b_{2} x\right) \cdots\left(1-b_{m} x\right)} .
$$

Proof.

(1) Extend the lemma to denominator $1-b x$ for $b \in \mathbb{Z}^{+}$.
(2) If P and Q are upho, $P \times Q$ is upho with $F_{P \times Q}=F_{P} F_{Q}$.
(3) Multiply by c-trees with rank-generating function
$1+c x+c^{2} x^{2}+\ldots=\frac{1}{1-c x}$.

Planarity

Definition

A ranked poset P is planar if there exists a Hasse diagram of P such that every element on rank i of P is at y-coordinate i and no two edges of the Hasse diagram intersect.

Planarity

Definition

A ranked poset P is planar if there exists a Hasse diagram of P such that every element on rank i of P is at y-coordinate i and no two edges of the Hasse diagram intersect.

Main Planarity Result

Theorem

The rank-generating function of any planar upho poset P with up-degree b is of the form

$$
\frac{1}{Q(x)}=\frac{1}{1-b x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}}
$$

such that $b, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}_{\geq 0}$ and $Q(1) \leq 0$. Furthermore, any such function $Q^{-1}(X)$ is realized by some planar upho poset.

Some Definitions

Definition

An element v of a planar upho poset is called root-bifurcated if it covers exactly 2 adjacent elements with greatest lower bound $\hat{0}$.

Definition

An element v of a planar upho poset is called bifurcated if it covers exactly 2 adjacent elements that do not have greatest lower bound $\hat{0}$.

Definition

An element v of a poset is an atom if it covers $\hat{0}$.

Proving the First Half of the Theorem

Proof.

Proving the First Half of the Theorem

Proof.

(1) If v is root-bifurcated, then v is greater than exactly two atoms p, q, and p and q are adjacent.

Proving the First Half of the Theorem

Proof.

(1) If v is root-bifurcated, then v is greater than exactly two atoms p, q, and p and q are adjacent.
(2) There are $\leq b-1$ root-bifurcated elements in a poset with up-degree b.

Proving the First Half of the Theorem

Proof.

(1) If v is root-bifurcated, then v is greater than exactly two atoms p, q, and p and q are adjacent.
(2) There are $\leq b-1$ root-bifurcated elements in a poset with up-degree b.
(If a_{i} is the number of root-bifurcated elements on rank i, then show that the rank-generating function of a planar poset P with up-degree b is

$$
\left(1-b x+\sum_{j=2}^{\infty} a_{j} x^{j}\right)^{-1}
$$

Uncomputability

Definition

A function is uncomputable if there does not exist an algorithm to compute it.

Uncomputability

Definition

A function is uncomputable if there does not exist an algorithm to compute it.

Theorem

There exists an upho poset with uncomputable rank-generating function.

Using Monoids to Construct Posets

Definition

A monoid is a set that is closed under an associative binary operation and an identity element.

Using Monoids to Construct Posets

Definition

A monoid is a set that is closed under an associative binary operation and an identity element.

- Alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{b}\right\}$, homogeneous relations $b_{1} b_{2} \ldots b_{k}=c_{1} c_{2} \ldots c_{k}$ for $b_{i}, c_{i} \in \Sigma$ for all $1 \leq i \leq k$.

Using Monoids to Construct Posets

Definition

A monoid is a set that is closed under an associative binary operation and an identity element.

- Alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{b}\right\}$, homogeneous relations $b_{1} b_{2} \ldots b_{k}=c_{1} c_{2} \ldots c_{k}$ for $b_{i}, c_{i} \in \Sigma$ for all $1 \leq i \leq k$.
- $X=Y$ implies $A X B=A Y B$, where A, B, X, and Y are strings of letters from Σ.

Using Monoids to Construct Posets

Definition

A monoid is a set that is closed under an associative binary operation and an identity element.

- Alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{b}\right\}$, homogeneous relations $b_{1} b_{2} \ldots b_{k}=c_{1} c_{2} \ldots c_{k}$ for $b_{i}, c_{i} \in \Sigma$ for all $1 \leq i \leq k$.
- $X=Y$ implies $A X B=A Y B$, where A, B, X, and Y are strings of letters from Σ.
- Define a monoid M of finite strings of letters of Σ with the operation of concatenation.

Using Monoids to Construct Posets

Definition

A monoid is a set that is closed under an associative binary operation and an identity element.

- Alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{b}\right\}$, homogeneous relations $b_{1} b_{2} \ldots b_{k}=c_{1} c_{2} \ldots c_{k}$ for $b_{i}, c_{i} \in \Sigma$ for all $1 \leq i \leq k$.
- $X=Y$ implies $A X B=A Y B$, where A, B, X, and Y are strings of letters from Σ.
- Define a monoid M of finite strings of letters of Σ with the operation of concatenation.
- Define a poset P consisting of elements of M with the order relation \leq, where $X \leq Y$ for $X, Y \in M$ if $X A=Y$ for some $A \in M$.

Examples

Example

Stern's poset is defined by the alphabet $\{a, b, c\}$ and the relations $a c=b a$ and $b c=c a$. Note, for example, that $b a a=a c a=a b c$.

Example

A binary tree is defined by the alphabet $\{a, b\}$ and no relations.

The Stern Poset

Binary tree

The Upho Condition in Relations

Lemma

Take a monoid M and its associated poset $P(M)$. Then, if $A X=A Y$ implies $X=Y$ for all $A, X, Y \in M$, then $P(M)$ is upho.

The Upho Condition in Relations

Lemma

Take a monoid M and its associated poset $P(M)$. Then, if $A X=A Y$ implies $X=Y$ for all $A, X, Y \in M$, then $P(M)$ is upho.

Proof.

(1) $B X \leq B Y$ if and only if $X \leq Y$, so the map $\iota: X \rightarrow B X$ is a homomorphism from P to V_{B}.
(2) ι is also a bijection.
(3) Thus, $V_{B} \cong P$ as desired.

Sketching the Proof

Proof.

(1) Find an infinite set of relations S on an alphabet $\{L, R\}$:

$$
\begin{aligned}
L R L R L L & =R R L L R L \\
L R L R L R L L & =R R L L L L R L \\
L R L R L R L R L L & =R R L L L L L L R L
\end{aligned}
$$

such that every poset defined by any subset of S is upho and has distinct rank-generating function.

Sketching the Proof

Proof.

(1) Find an infinite set of relations S on an alphabet $\{L, R\}$:

$$
\begin{aligned}
L R L R L L & =R R L L R L \\
L R L R L R L L & =R R L L L L R L \\
L R L R L R L R L L & =R R L L L L L L R L
\end{aligned}
$$

such that every poset defined by any subset of S is upho and has distinct rank-generating function.
(2) This set of posets has an uncountably infinite number of different rank-generating functions.

Sketching the Proof

Proof.

(1) Find an infinite set of relations S on an alphabet $\{L, R\}$:

$$
\begin{aligned}
L R L R L L & =R R L L R L \\
L R L R L R L L & =R R L L L L R L \\
L R L R L R L R L L & =R R L L L L L L R L
\end{aligned}
$$

such that every poset defined by any subset of S is upho and has distinct rank-generating function.
(2) This set of posets has an uncountably infinite number of different rank-generating functions.
(3) There are a countably infinite number of computable rank generating functions (Sipser, 1996).

Acknowledgements

We would like to thank:

- Yibo Gao
- Prof. Richard Stanley
- The MIT PRIMES program

