On the Generational Behavior of Gaussian Binomial Coefficients at Root of Unity

Quanlin Chen, Tianze Jiang, Yuxiao Wang
Mentor: Calder Oakes Morton-Ferguson

17.-18. October 2020

Introduction

p-adic Valuation and Pascal Triangle
$\nu_{p}(n)$ denotes the number of prime factor p of n.

$$
\nu_{3}(4)=0 ; \nu_{2}(6)=1 ; \nu_{5}(125)=3 .
$$

Binomial Coefficients $\binom{m}{n}$ denote the number of ways to choose n objects out of m objects.

$$
\binom{4}{0}=1,\binom{4}{1}=4,\binom{4}{2}=6,\binom{4}{3}=4,\binom{4}{4}=1
$$

Introduction

p-adic Valuation and Pascal Triangle

$$
\begin{aligned}
& \nu_{3}\left(\binom{4}{0}\right)=\nu_{3}(1)=0 \\
& \nu_{3}\left(\binom{4}{1}\right)=\nu_{3}(4)=0 \\
& \nu_{3}\left(\binom{4}{2}\right)=\nu_{3}(6)=1 \\
& \nu_{3}\left(\binom{4}{3}\right)=\nu_{3}(4)=0 \\
& \nu_{3}\left(\binom{4}{4}\right)=\nu_{3}(1)=0
\end{aligned}
$$

Introduction

Generational Behavior of Pascal Triangle

```
                        1 1
                    1
                    1 1 1 1
                    2<1\times2\times2\times1\times2\times2
            2<1112 1 1 2
            1<11 1<1<1
                1\times1\times2\times2\times1\times2\times2\times1\times1
            1\times2\times1\times1 2 < 1
```



```
            1\times 1 < < 2 < 1 1 < 1
                2\times2 1 2\times2\times1\times2 2\times 2\times2\times1\times2 2\times1\times2\times2
                    2\times11 2 1 1\times2\times < 2 1 1 2 1 1 2
                    1\times1\times1\times1\times1\times < 1\times1\times1\times1\times1\times1
                    1< 1\times2\times2\times1\times2\times2\times 1\times1\times < 2\times2\times1\times2\times2\times 1\times1
                    1\times < 2\times1\times1 2 < 1 < < 2 1 1 2 < < 1 
                    1\times1 < 1 1 < 2 2 < 1 1 < 1 1 < 2 2 1 1 1 1 < 1 1
```



```
                    3\times3\times2\times3\times3 2\times3\times3\times1\times3\times3\times2\times3\times3\times2\times3\times3\times1\times3\times3\times2\times3\times3\times2\times3\times3
                    3\times2\times2\times3\times2\times2\times3\times1\times1\times3\times2\times2\times3\times2\times2\times3\times1\times1\times3\times2\times2\times3\times2\times2\times3
```



```
    1\times < 3 2 2 3 1 1\times2 1 1\times3\times2\times2\times3\times1\times1\times2\times1\times1\times3\times2\times2\times3\times1
1<1\times1\times 1 3 3\times1\times2\times2\times1\times2\times2\times1\times3\times3\times1\times2\times2\times1\times2\times2\times1\times3\times3\times1\times1\times1\times1\times1\times1
1\times1\times < 3\times1\times1\times2\times1\times1\times2\times1\times1\times3\times1\times1\times2\times1\times1\times2\times1\times1\times3\times1.
```


v-Analog

When we consider the characters of quantum group, a generalization to the binomial coefficients gives the Gaussian binomial coefficients.

Definition
For $v \in \mathbb{C}, N \in \mathbb{Z}$,

$$
[N]_{v}!=\prod_{s=1}^{N} \frac{v^{s}-v^{-s}}{v-v^{-1}} .
$$

For $m, n \in \mathbb{Z}^{*}$, define the Gaussian binomial coefficients

$$
\left[\begin{array}{c}
m \\
n
\end{array}\right]_{v}=\frac{[m]_{v}!}{[n]_{v}!\cdot[m-n]_{v}!} .
$$

It is useful in symmetry polynomials, partitions, representation theory, etc.

v-Analog

Examples

$$
\begin{gathered}
{\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{2}=\frac{2^{2}-2^{-2}}{2-2^{-1}}=2+2^{-1}=\frac{5}{2}} \\
{\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{i}=\frac{\left(i^{4}-i^{-4}\right)\left(i^{3}-i^{-3}\right)}{\left(i^{2}-i^{-2}\right)\left(i-i^{-1}\right)}=\left(i^{2}+i^{-2}\right)\left(i^{2}+1+i^{-2}\right)=0 \times 1=0}
\end{gathered}
$$

where $i=\sqrt{-1}$.

Major Object

Analog to Pascal triangle: v-Pascal triangle.

Figure: $e^{2 \pi i / 3}$-Pascal triangle
v-Analog
Motivation

Representation theory background:
generational relationship between reductive algebraic groups in prime characteristic and quantum groups at roots of unity.

Describing v-Pascal Triangle: an elementary shadow.

v-Analog

Motivation

v-Pascal Triangle \Rightarrow Pascal Triangle:

Layering Behavior

[Lusztig 1989]

Figure: $e^{2 \pi i / 3}$-Pascal triangle

Integral Values

Note that:

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{e^{2 \pi i / 5}}=e^{2 \pi i / 5}+e^{-2 \pi i / 5}=\frac{\sqrt{5}-1}{2}
$$

Pathways to integers:
Summing up all the primitive roots of unity

$$
\left[\begin{array}{c}
m \\
n
\end{array}\right]_{q}^{\bullet}=\sum_{\operatorname{gcd}(k, q)=1,1 \leq k \leq q-1}\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{2 \pi i \frac{k}{q}}}
$$

Summing up all the roots of unity

$$
\left[\begin{array}{c}
m \\
n
\end{array}\right]_{q}^{\dagger}=\sum_{k=0}^{q-1}\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{2 \pi i \frac{k}{q}}}
$$

Generational Behavior

Example: Consider $9^{\text {th }}$ roots of unity.

$$
\begin{gathered}
{\left[\begin{array}{c}
m \\
n
\end{array}\right]_{9}^{\bullet}=\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{2 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{4 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{8 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{10 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{14 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{16 \pi}{9}}}} \\
{\left[\begin{array}{c}
m \\
n
\end{array}\right]_{9}^{\dagger}=\left[\begin{array}{c}
m \\
n
\end{array}\right]_{1}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{2 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{4 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{6 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{8 \pi}{9}}}} \\
+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{10 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{12 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{14 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{16 \pi}{9}}} \\
\\
{\left[\begin{array}{l}
4 \\
1
\end{array}\right]_{9}^{\bullet}=-6 ;\left[\begin{array}{l}
4 \\
1
\end{array}\right]_{9}^{\dagger}=0}
\end{gathered}
$$

Generational Behavior

Which one will work?

Figure: Pascal Triangle and $e^{2 \pi i / 3}$-Pascal Triangle 3 Valuations

The "Generational" Philosophy

Lusztig [1989, 2015]: characters of quantum groups.
Williamson [2020]: Quantum groups \rightarrow algebraic groups
Lusztig \& Wiliamson [2018]: Tilting characters
Elementary Version: Complication (Gaussian Binomial Coefficients) \rightarrow simplicity (Binomial Coefficients)

Generational Behavior

Which one will work?

How about the p^{k} cases?
Original Values? Zeros? mod p ? p Valuation?

$$
\left[\begin{array}{c}
m \\
n
\end{array}\right]_{q}^{\bullet} \text { or }\left[\begin{array}{c}
m \\
n
\end{array}\right]_{q}^{\dagger} ?
$$

Solution:
Summing up all the non-one roots of unity:

$$
\left[\begin{array}{c}
m \\
n
\end{array}\right]_{q}^{*}=\sum_{k=1}^{q-1}\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{2 \pi i \frac{k}{q}}}
$$

A Clever Way

Summing up all the non-one roots of unity:

$$
\begin{gathered}
{\left[\begin{array}{c}
m \\
n
\end{array}\right]_{q}^{*}=\sum_{k=1}^{q-1}\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{2 \pi i \frac{k}{q}}}} \\
{\left[\begin{array}{c}
m \\
n
\end{array}\right]_{9}^{*}=\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{2 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{4 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{6 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{8 \pi}{9}}}} \\
+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{10 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{12 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{14 \pi}{9}}}+\left[\begin{array}{c}
m \\
n
\end{array}\right]_{e^{\frac{16 \pi}{9}}} \\
\\
{\left[\begin{array}{l}
4 \\
1
\end{array}\right]_{9}^{\bullet}=-6 ;\left[\begin{array}{l}
4 \\
1
\end{array}\right]_{9}^{\dagger}=0 ;\left[\begin{array}{l}
4 \\
1
\end{array}\right]_{9}^{*}=-4}
\end{gathered}
$$

A Clever Way

Figure: Pascal Triangle and $\left[\begin{array}{c}m \\ n\end{array}\right]_{9}^{*} 3$ Valuations

A Clever Way

Figure: Pascal Triangle and $\left[\begin{array}{c}m \\ n\end{array}\right]_{27}^{*} 3$ Valuations

Formulation and Generalization

Definition

Fix an odd prime p. For a nonnegative integer k, we define the k th generation vanishing in the $\bmod p$ Pascal's triangle to be the set of pairs (m, n) for which there are carriers the last k digits of its base p expansion, which is equivalent to

$$
\binom{p^{k}+m \quad\left(\bmod p^{k}\right)}{n \quad\left(\bmod p^{k}\right)} \equiv 0 \quad\left(\bmod p^{k}\right)
$$

Theorem (Main)

Fix an odd prime p. The k th generation vanishing in the $\bmod p$ Pascal's triangle corresponds exactly to the vanishing of $\binom{m}{n}_{p^{k}}^{*}$; in other words, $\binom{m}{n}_{p^{k}}^{*}$ vanishes if and only if (m, n) belongs to the k th generation vanishing of the mod p Pascal's triangle. Furthermore, if (m, n) does not belong to the k th generation vanishing, then

$$
v_{p}\binom{m}{n}_{p^{k}}^{*}=v_{p}\binom{m}{n} .
$$

Generalization:
If we replace $\binom{m}{n}_{p^{k}}^{*}$ by $\binom{m}{n}_{2 p^{k}}^{*}-\binom{m}{n}_{p^{k}}^{*}-\binom{m}{n}_{-1}$, the same result holds.

More Results

No generational behaviors present in $\left[\begin{array}{c}m \\ n\end{array}\right]_{q}^{\bullet}$ and $\left[\begin{array}{c}m \\ n\end{array}\right]_{q}^{\dagger}$. However, some information is known:
$\left[\begin{array}{c}m \\ n\end{array}\right]_{q}^{\dagger}:$ Zeros and lower bounds of p valuations;
$\left[\begin{array}{c}m \\ n\end{array}\right]_{q}^{\circ}$: Some zeros and conjectures on zeros and signs.

Acknowledgements

We would like to thank:

- Mr. Calder Oakes Morton-Ferguson for mentorship,
- Mr. Qiusheng Li for discussion and advice all through,
- USA-PRIMES for this research opportunity,
- Yizhen Chen for proofreading our result.

References

(Fray, R. D. et al. Congruence properties of ordinary and q-binomial coefficients. Duke Mathematical Journal 34, 467-480 (1967).
國 Knuth, D. E. \& Wilf, H. S. The power of a prime that divides a generalized binomial coefficient. J. reine angew. Math 396, 212-219 (1989).
Lusztig, G. On the character of certain irreducible modular representations. Representation Theory of the American Mathematical Society 19, 3-8 (2015).
Lusztig, G. Modular representations and quantum groups. Contemp. Math 82, 59-78 (1989).
Stanley, R. P. Enumerative combinatorics. Vol. I, The Wadsworth \& Brooks/Cole Mathematics Series, Wadsworth \& Brooks. 1986.
: Williamson, G. Modular representations and reflection subgroups. arXiv preprint arXiv:2001.04569 (2020).

