The Center of the *q*-Weyl Algebra over Rings with Torsion

Quanlin Chen

Mentor: Calder Oakes Morton-Ferguson

17.-18. October 2020

Quanlin Chen (PRISMS)

MIT PRIMES Conference

ence 1/14

17.-18. October 2020

1/14

A (1) > (1)

The Weyl algebra and *q*-Weyl algebra

Definition

Let q and h be indeterminates. For a commutative ring R we define the Weyl algebra, generalized Weyl algebra, the q-Weyl Alegbra, and the first q-Weyl algebra over R as

$$W(R) = R\langle a, b \rangle / (ba - ab - 1),$$

 $W^h(R) = R\langle a, b \rangle / (ba - ab - h),$
 $W_q(R) = R\langle a, a^{-1}, b, b^{-1} \rangle / (ba - qab),$
 $W_q^{(1)}(R) = R\langle x, x^{-1}, y, y^{-1} \rangle / (yx - qxy - 1).$

respectively.

Quanlin Chen (PRISMS)

A D N A B N A B N

17.-18. October 2020 2/14

The Weyl algebra and *q*-Weyl algebra

The ring of differential and q-differential operators over the affine space \mathbb{A}^1_R .

$$W(R) = R\langle x, \frac{\partial}{\partial x} \rangle, W_q^{(1)}(R) = R\left\langle x, \left(\frac{d}{dx}\right)_q \right\rangle.$$

We have $\partial x = x\partial + 1$ since

$$(xf(x))' = xf'(x) + f(x).$$

Quanlin Chen (PRISMS)

3

3/14

イロト イボト イヨト イヨト

The q-Weyl algebra: q deformation

In
$$W(R)$$
,
 $a: f(x) \mapsto xf(x); b: f(x) \mapsto \frac{\partial f(x)}{\partial x}$.
In $W_q(R)$,
 $a: f(x) \mapsto e^x f(x); b: f(x) \mapsto f(x + \log q)$
In $W_q^{(1)}(q)$,
 $a: f(x) \mapsto xf(x); b: f(x) \mapsto \frac{df(x)}{dx}_q$.

Quanlin Chen (PRISMS)

MIT PRIMES Conference

<ロト < 回ト < 回ト < 回ト < 回ト</p>

2

The center of the Weyl algebra Known Results

Theorem

When R is a field of characteristic p, Z(W(R)) is generated by $a^{p}, b^{p}, pa^{p-1}, pb^{p-1}, \dots$

Theorem

When R is torsion-free and q is a root of unity of order I, $Z(W_q(R))$ is generated by a^l and b^l .

Interpolation: what happens when R is a ring with torsion and q is a root of unity?

5/14

A D N A B N A B N

The center of the Weyl algebra $_{\mbox{\scriptsize Motivation}}$

- A Kaledin's conjecture proven by Stewart and Vologodsky describes the center of the rings of differential operators on smooth varieties over Z/pⁿZ via Witt vectors.
- "Quantize" Stewart and Vologodsky's result in the simplest case: Weyl algebra $\rightarrow q$ -Weyl algebra.
- Roman Bezrukavnikov raises a question about possible interpolation between the two known results: what if $R = \mathbb{Z}/p^N\mathbb{Z}$ and q is a root of unity.

6/14

< ロ > < 同 > < 三 > < 三 >

Definition

Fix a non-negative integer n and a prime p, a **Witt vector** over a commutative ring R is a vector $(r_0, r_1, r_2, ..., r_n)$ with terms in R. Define the **"ghost component map"** from R^{n+1} to R as

$$w_n: (r_0, r_1, r_2, \ldots, r_n) \mapsto \sum_{i=0}^n p^i r_i^{p^{n-i}}.$$

We define the **Witt vector ring** $W_n(R)$ consists of all the Witt vectors over R with addition and multiplication preserving the addition and multiplication of the ghost components.

Quanlin Chen (PRISMS) MIT PRIMES Conference 7/14 17.-18. October 2020 7/14

< ロ > < 同 > < 三 > < 三 >

We compute the center for

- $W^h(\mathbb{Z}/p^N\mathbb{Z});$
- $W_q(\mathbb{Z}/p^N\mathbb{Z})/P(q)$ for monic P irreducible in \mathbb{F}_p ;
- $(W_q(\mathbb{Z}/p^N\mathbb{Z})/(q^{p^n}-1))$ and $W_q(\mathbb{Z}/p^N\mathbb{Z})/(\Phi_{p^n}(q));$
- $W_q^{(1)}(\mathbb{Z}/p^N\mathbb{Z})/P(q).$

For simplicity, we write $R = \mathbb{Z}/p^N\mathbb{Z}$.

Quanlin Chen (PRISMS)

8/14

< ロ > < 同 > < 三 > < 三 >

Our results On the center of $W^h(R)$

Theorem

Let $h \in \mathbb{Z}/p^N\mathbb{Z}[q]$ be a polynomial of q. Then

$$Z(W^h(R)) \simeq \mathbb{W}_{N-\nu_p(h)}\left(R[\widetilde{a},\widetilde{b}]\right)[q].$$

Quanlin Chen (PRISMS) MIT PRIMES Conference

イロト イポト イヨト イヨト

9/14

Our results On the center of $W_q(R)$

Definition

For a polynomial $P \in \mathbb{Z}[q]$, define M(P) to be the smallest positive integer such that $x^{M(P)} - 1$ is divisible by P in $\mathbb{F}_p[q]$, and I(P) to be the greatest positive integer such that $x^{M(P)} - 1$ is divided by P in $\mathbb{Z}/p^{I(P)}\mathbb{Z}$.

Theorem

When monic polynomial $P \in R[q] = \mathbb{Z}/p^N \mathbb{Z}[q]$ is irreducible polynomial in \mathbb{F}_p , we have

$$Z(W_q(R)/P(q)) \simeq \mathbb{W}_{N-l(P)}(R[\widetilde{a}^{M(P)}, \widetilde{a}^{-M(P)}, \widetilde{b}^{M(P)}, \widetilde{b}^{-M(P)}])[q]/P(q).$$

Our results

On the center of $W_q(R)$, when q is a p^n -th root of unity

Theorem

$$Z(W_q(\mathbb{Z}/p^N\mathbb{Z})/(q^{p^n}-1))\simeq \sum_{i=0}^n rac{q^{p^n}-1}{q^{p^i}-1}R[\widetilde{a}^{p^i},\widetilde{a}^{-p^i},\widetilde{b}^{-p^i},\widetilde{b}^{p^i}][q]/(q^{p^n}-1)).$$

Theorem

$$Z(W_q(\mathbb{Z}/p^N\mathbb{Z})/(\Phi_{p^n}(q)))$$

$$\simeq \left(\sum_{i=0}^{n-1} p^{N-1} \cdot \frac{\Phi_{p^n}(q) - p}{q^{p^i} - 1} R[\tilde{a}^{p^i}, \tilde{a}^{-p^i}, \tilde{b}^{p^i}, \tilde{b}^{-p^i}][q]/(\Phi_{p^n}(q)))\right)$$

$$+ R[\tilde{a}^{p^n}, \tilde{a}^{-p^n}, \tilde{b}^{p^n}, \tilde{b}^{-p^n}][q]/(\Phi_{p^n}(q))).$$

э

Our results On the center of $W_q^{(1)}(R)$

Theorem

When P(1) is not a multiple of p, we have

 $Z(W_q^{(1)}(R)/P(q)) \simeq Z(W_q(R)/P(q)).$

Corollary

If P is monic and irreducible modulo p, we have

 $Z(W_q^{(1)}(R)/P(q)) \simeq \mathbb{W}_{N-I(P)}(R[\widetilde{a}^{M(P)}, \widetilde{b}^{M(P)}, \widetilde{a}^{-M(P)}, \widetilde{b}^{-M(P)}])[q]/P(q).$

(日) (四) (日) (日) (日)

We would like to thank:

- Mr. Calder Oakes Morton-Ferguson for mentorship,
- USA-PRIMES for this research opportunity,
- Prof. Roman Bezrukavnikov for helpful suggestions.

4 A I

References

- Bezrukavnikov, R., Mirković, I., Rumynin, D. & Riche, S. Localization of modules for a semisimple Lie algebra in prime characteristic. *Annals of Mathematics*, 945–991 (2008).
- Etingof, P. I. *et al. Introduction to representation theory.* (American Mathematical Soc., 2011).
- Gerstenhaber, M. & Giaquinto, A. On the cohomology of the Weyl algebra, the quantum plane, and the q-Weyl algebra. *Journal of Pure and Applied Algebra* **218**, 879–887 (2014).

Stewart, A. & Vologodsky, V. On the center of the ring of differential operators on a smooth variety over $\mathbb{Z}/p^n\mathbb{Z}$. *Compositio Mathematica* **149**, 63–80 (2013).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >