Asymptotics for Iterating the Lusztig-Vogan Bijection for GL_n on Dominant Weights

Yuxiao Wang

Mentor: Calder Oakes Morton-Ferguson

17.-18. October 2020

Lusztig-Vogan Bijection

Lusztig-Vogan Bijection is a correspondence between dominant weights of reductive algebraic groups and vector bundles on nipotent orbits.

Lusztig-Vogan Bijection

Background

- Lusztig (1989) and Vogan (2000): constructed the bijection
- Bezrukavnikov (2003) : proof
- Achar (2011) : proposed algorithm
- Rush (2017): simplified Achar's algorithm on GL_n (Type A)

Lusztig-Vogan Bijection Type A

Figure – Lusztig-Vogan Bijection Type A

 ϕ : construct a $\mathbf{weighted}$ $\mathbf{diagram}$ from a weakly decreasing sequence of integers.

E : modify a weighted diagram column-by-column by elements' **order**.

 κ : Construct a set of weakly decreasing sequences of integers by **row-length**.

Lusztig-Vogan Bijection Type A

In Iteration

- ullet Start with a weakly decreasing sequence σ
- First iteration, output is a list of weakly decreasing sequences $(\mu_1, \mu_2, \cdots, \mu_l)$
- Apply map on each list μ_i with length at least 2 and obtain a list of sequences for each.
- The procedure terminates when the length of each sequence is 0 or 1.

Example

$$(10,10,9,7,4,2) \rightarrow ((6,5,5),(),(26)) \rightarrow (((),(),(16)),(),(26))$$

Lusztig-Vogan Bijection Type A

time

Definition

Let σ be a sequence of weakly decreasing integers. Then $t(\sigma)$ (time of σ) denotes the number of iterations needed to perform on σ until each sequence has length 0 or 1.

Example

$$(10,10,9,7,4,2) \rightarrow ((6,5,5),(),(26)) \rightarrow (((),(),(16)),(),(26))$$

$$t((10, 10, 9, 7, 4, 2)) = 2$$

Length 2

For any x > y, if

- $x y \ge 2$, LV((x, y)) = (x 1, y + 1)
- $0 \le x y \le 1$, LV((x, y)) = ((), (x + y))

Example

$$(10,3) \to (9,4) \to (8,5) \to (7,6) \to ((),(13))$$

Theorem

For all weakly decreasing sequence of length 2 (x, y), we have $t(x, y) = \lfloor \frac{d}{2} \rfloor + 1$, where d = x - y. In addition, the final output is always ((), (x + y)).

Length 3

Examples

$$(10,7,0) \rightarrow (8,7,2) \rightarrow ((3),(14))$$

 $(10,4,-1) \rightarrow (8,4,1) \rightarrow (6,4,3) \rightarrow ((5),(8))$

Theorem

For all weakly decreasing sequence of length 3 (x, y, z), we have $t(x, y) = \left|\frac{\min(d_1, d_2)}{2}\right| + 1$, where $d_1 = x - y$, $d_2 = y - z$.

Length 4

Examples

$$(10,8,6,-5) \to (7,7,7,-2) \to ((-1),(),(20))$$

$$(10,9,8,-5) \rightarrow ((8,-3),(17)) \rightarrow ((7,-2),(17)) \rightarrow ((6,-1),(17))$$

 $\rightarrow ((5,0),(17)) \rightarrow ((4,1),(17)) \rightarrow ((3,2),(17)) \rightarrow (((),(5)),(17))$

Length 4

Theorem

Let $\sigma=(x,y,z,w)$ be a weakly decreasing sequence. Assume that $d_1=x-y, d_2=y-z, d_3=z-w, f_1=\left\lfloor\frac{d_1}{2}\right\rfloor, f_2=\left\lfloor\frac{d_2}{2}\right\rfloor, f_3=\left\lfloor\frac{d_3}{2}\right\rfloor$. Then,

$$t(\sigma) = \begin{cases} \left\lfloor \frac{d_1}{2} \right\rfloor + 1 & \text{if } f_3 < f_1, f_2; \\ -\left\lfloor \frac{d_2}{2} \right\rfloor + \left\lfloor \frac{d_1 + d_3 + Mod(d_2, 2)}{2} \right\rfloor & \text{if } f_2 < f_1, f_3; \\ \left\lfloor \frac{d_3}{2} \right\rfloor + 1 & \text{if } f_1 < f_2, f_3; \\ \left\lfloor \frac{d_2}{2} \right\rfloor + 1 & \text{if } f_1 > f_2 = f_3 \text{ and } 2 \mid d_2 d_3; \\ \left\lfloor \frac{d_1}{2} \right\rfloor + 1 & \text{if } f_1 > f_2 = f_3 \text{ and } 2 \nmid d_2 d_3; \\ d_2 - \left\lfloor \frac{d_1}{2} \right\rfloor & \text{if } f_2 > f_1 = f_3; \\ \left\lfloor \frac{d_1}{2} \right\rfloor + 1 & \text{if } f_3 > f_2 = f_1 \text{ and } 2 \mid d_1 d_2; \\ \left\lfloor \frac{d_3}{2} \right\rfloor + 1 & \text{if } f_3 > f_2 = f_1 \text{ and } 2 \nmid d_1 d_2; \\ \left\lfloor \frac{\min(d_1, d_2, d_3) + 1}{2} \right\rfloor + 1 & \text{if } f_1 = f_2 = f_3. \end{cases}$$

Average Time

Definition

Definition

Let $n \ge 0, k > 0$ be integers. Let $S_{n,k}$ be the set of all length k weakly decreasing sequence whose first (largest) term is n and whose last (smallest) term is n. Define

$$avg_k(x) := \frac{\sum_{y_{x,k}} t(y)}{|S_{x,k}|}.$$

Average Time

Corollary

$$avg_2(x) = \lfloor \frac{x}{2} \rfloor + 1$$
.

Corollary

$$\lim_{x\to\infty} avg_3(x) = \frac{x+6}{8}$$
.

Theorem

 $avg_4(x), 2 \mid x$ and $avg_4, 2 \nmid x$ approach two lines, both of which have slope $\frac{5}{18}$.

Average Time

Figure – $avg_4(x)$

Average Time

Theorem (Main)

For any positive integer $k \ge 4$, the asymptotic behavior of $avg_k(x)$, $2 \mid x$ and $2 \nmid x$ approaches two lines, both of which have the same slope.

Definition

Denote c_n as the slope of the asymptote of $avg_n(x)$, $2 \mid x$.

Slope of Asymptotes

Theorem (Main)

Let $c_{2,1}=c_2, c_{3,1}=c_{3,2}=c_3$. For $n \ge 4$, we define a sequence $\{c_{n,1}, c_{n,2}, \cdots, c_{n,n-2}, c_{n,n-1}\}$ recursively :

$$c_{n,1} = c_{n,n-1} = \frac{n-3}{n-1}c_{n-2} + \frac{1}{2(n-1)^2}$$

$$c_{n,k} = \frac{n-2}{n-1} \left(\frac{n-2}{n-3} c_{n-2} - \frac{1}{n-3} c_{n-2,k-1} \right) + \frac{1}{2(n-1)^2} \text{ for any } 2 \le k \le n-2$$

Then we have $c_n = \frac{1}{n-1} \sum_{i=1}^{n-1} c_{n,i}$.

Slope of Asymptotes

Figure – First 200 Slopes of Asymptotes of avg_n ; c_n , $2 \le n \le 200$.

Acknowledgements

I would like to thank:

- Mr. Calder Oakes Morton-Ferguson for mentorship,
- Prof. Roman Bezrukavnikov for proposing this project,
- MIT PRIMES-USA for the research opportunity.

Reference

- Bezrukavnikov, Roman. "Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone". In: *Represent. Theory* 7 (2003), p. 1-18.
- Lusztig, George. "Cells in affine Weyl groups". In: J. Fac. Sci. Univ. Tokyo Sec. IA Math. 36 (1989), p. 297-328.
- Pramod N. Achar, William Hardesty. "Integral exotic sheaves and the modular Lusztig-Vogan Bijection". In: arXiv (2018).
- Rush, David B. "Computing the Lusztig-Vogan Bijection". In: arXiv (2017).
- Vogan, David A. "The method of coadjoint orbits for real reductive groups". In: *IAS/Park Clty Math. Ser., vol. 8, Amer. Math. Soc.* 8 (2000), p. 179-238.