Tight contact structures on the solid torus

Informally, contact geometry is concerned with contact structures, which are geometric structures defined on odd-dimensional spaces.

Informally, contact geometry is concerned with contact structures, which are geometric structures defined on odd-dimensional spaces.

It helps us better understand and prove results in low-dimensional topology, but many fundamental questions still remain unanswered.

Informally, contact geometry is concerned with contact structures, which are geometric structures defined on odd-dimensional spaces.

It helps us better understand and prove results in low-dimensional topology, but many fundamental questions still remain unanswered.

Open question

Can we classify the contact structures on a given 3-manifold?

Section 1 Contact geometry background

Smooth manifolds

Smooth manifolds

A smooth *n*-manifold is a (Hausdorff) topological space M without edges or corners which locally looks like an open set of \mathbb{R}^n .

The surface of a ball is a 2-manifold without boundary

Smooth manifolds

A smooth *n*-manifold is a (Hausdorff) topological space M without edges or corners which locally looks like an open set of \mathbb{R}^n . If M contains its boundary ∂M , we call it an *n*-manifold with boundary.

The surface of a ball is a 2-manifold without boundary

A solid torus is a 3-manifold with boundary

Tangent spaces

At each point $x \in M$, we can define the tangent space T_xM as the *n*-dimensional vector space consisting of all vectors tangent to M at x.

Tangent spaces

At each point $x \in M$, we can define the tangent space T_xM as the *n*-dimensional vector space consisting of all vectors tangent to M at x.

For the rest of this talk, M will be a smooth 3-manifold with boundary (n = 3).

Contact structures

Contact structures

A contact structure ξ on M is a way to smoothly assign a plane $\xi_x \subset T_x M$ to every $x \in M$ such that no surface $S \subset M$ is tangent to ξ_x for every $x \in S$.

The standard contact structure ξ_{st} on \mathbb{R}^3 .

Contact structures

A contact structure ξ on M is a way to smoothly assign a plane $\xi_x \subset T_x M$ to every $x \in M$ such that no surface $S \subset M$ is tangent to ξ_x for every $x \in S$.

The standard contact structure ξ_{st} on \mathbb{R}^3 .

A contact structure is just a very "twisty" way to assign a plane to each point.

			_		
	000	00		2.21	~~
	1255				
_	000				

Vector fields

Vector fields

A vector field X on a 3-manifold M is a way to smoothly assign a tangent vector $X_x \in T_x M$ to every $x \in M$.

Vector fields

A vector field X on a 3-manifold M is a way to smoothly assign a tangent vector $X_x \in T_x M$ to every $x \in M$.

We call X a contact vector field if pushing ξ from x to a nearby point y along X takes ξ_x to ξ_y .

The dividing set

The dividing set

Call $\Sigma \subset M$ be a convex surface if there exists a contact vector field X such that $X_x \notin T_x \Sigma$ for any $x \in \Sigma$.

The dividing set

Call $\Sigma \subset M$ be a convex surface if there exists a contact vector field X such that $X_x \notin T_x \Sigma$ for any $x \in \Sigma$. The dividing set on a convex surface Σ is

$$\Gamma_{\Sigma} = \{ x \in \Sigma : X_x \in \xi_x \}.$$

Giroux flexibility

Giroux Flexibility Theorem

Let M be a fixed 3-manifold with boundary. If $\Sigma \subset M$ is convex, then Γ_{Σ} encodes **all** relevant contact topological information about (M, ξ) on the neighborhood of Σ .

Giroux Flexibility Theorem

Let M be a fixed 3-manifold with boundary. If $\Sigma \subset M$ is convex, then Γ_{Σ} encodes **all** relevant contact topological information about (M, ξ) on the neighborhood of Σ .

Main question

For every possible dividing set Γ_{Σ} on the boundary $\Sigma = \partial M$, how many contact structures have the dividing set Γ_{Σ} on Σ ?

Tight contact structures

Tight contact structures

Call ξ tight if it is not overtwisted, i.e, if it does not contain an overtwisted disk:

Tight contact structures

Call ξ tight if it is not overtwisted, i.e, if it does not contain an overtwisted disk:

Overtwisted manifolds are fully understood, so we focus on tight contact structures, where the only complete result is on the 3-ball.

Section 2 Research: The solid torus

Let M be the solid torus. A dividing set Γ on ∂M can be written as (n, -p, q) with gcd(p, q) = 1 and q < p:

Let M be the solid torus. A dividing set Γ on ∂M can be written as (n,-p,q) with $\gcd(p,q)=1$ and q < p:

- 2n is the number of components of Γ ;
- -p is the number of times each component goes around λ;
- *q* is the number of times each component goes around *μ*.

Let M be the solid torus. A dividing set Γ on ∂M can be written as (n,-p,q) with $\gcd(p,q)=1$ and q < p:

- 2n is the number of components of Γ ;
- -p is the number of times each component goes around λ;
- q is the number of times each component goes around μ.

Research question

What is a formula for N(n, -p, q), the number of tight contact structures on the solid torus M with dividing set $\Gamma = (n, -p, q)$ on the boundary ∂M ?

Known results on the solid torus

When (p,q) = (1,1), define r = 1. Otherwise, write

$$-\frac{p}{q} = [r_0, r_1, \dots, r_k] = r_0 - \frac{1}{r_1 - \frac{1}{r_2 - \dots - \frac{1}{r_k}}},$$

where $r_i \leq -2$ are integers and define

$$r = |(r_0 + 1)(r_1 + 1)\dots(r_{k-1} + 1)r_k|.$$

Theorem (Honda) $N(n, -1, 1) = C_n = \frac{1}{2n+1} \binom{2n}{n}$ N(1, -p, q) = r

Jessica Zhang

Main theorem

When (p,q) = (1,1), define r = s = 1. Otherwise, write

$$-\frac{p}{q} = [r_0, r_1, \dots, r_k] = r_0 - \frac{1}{r_1 - \frac{1}{r_2 - \dots - \frac{1}{r_k}}},$$

where $r_i \leq -2$ are integers and define

$$r = |(r_0 + 1)(r_1 + 1)\dots(r_{k-1} + 1)r_k|,$$

$$s = |(r_0 + 1)(r_1 + 1)\dots(r_{k-1} + 1)(r_k + 1)|.$$

Theorem

The number of tight contact structures on (n, -p, q) is

$$N(n, -p, q) = C_n((r-s)n + s),$$

where C_n is the *n*-th Catalan number.

Jessica Zhang

A bypass is a half-disk attached to ∂M and which intersects Γ at three points.

A bypass is a half-disk attached to ∂M and which intersects Γ at three points. It changes Γ based on the bypass attachment lemma.

Interior bypasses simplify Γ by decreasing n.

The dividing set goes from $\left(2,-2,1\right)$ to $\left(1,-2,1\right)$

Interior bypasses simplify Γ by decreasing n.

The dividing set goes from $\left(2,-2,1\right)$ to $\left(1,-2,1\right)$

This lets us use inclusion-exclusion to find a recurrence relation:

$$N(n, -p, q) = \sum_{k=1}^{n} (-1)^{k+1} a_{k,n} N(n-k, -p, q).$$

Interior bypasses simplify Γ by decreasing n.

The dividing set goes from $\left(2,-2,1\right)$ to $\left(1,-2,1\right)$

This lets us use inclusion-exclusion to find a recurrence relation:

$$N(n, -p, q) = \sum_{k=1}^{n} (-1)^{k+1} a_{k,n} N(n-k, -p, q).$$

Theorem

$$N(n, -p, q) = C_n((r-s)n + s)$$

Jessica Zhang

Acknowledgments

- My mentor, Zhenkun Li
- PRIMES
- Professor John Etnyre
- Professor Ko Honda
- My family

Image credits

- The cover image and the image of an overtwisted disk were made with Blender by Professor Patrick Massot of Université Paris-Sud. They have been used with permission.
- The image of ξ_{st} is due to Wikipedia.
- The image of a vector field was made using Mathematica.
- All other images were made using Asymptote.

References

Yakov Eliashberg. Classification of overtwisted contact structures on 3-manifolds. *Invent. Math.*, 98(3):623–637, 1989.

Emmanuel Giroux. Convexité en topologie de contact. *Comment. Math. Helv.*, 66(4):637–677, 1991.

Ko Honda. On the classification of tight contact structures I. *Geom. Topol.*, 4:309–368, 2000.

Ko Honda. Gluing tight contact structures. *Duke Math. J.*, 115(3):435–478, 2002.