Colored HOMFLY Polynomials of Genus-2 Pretzel Knots

William Qin mentor: Yakov Kononov

Millburn High School

October 18, 2020 MIT PRIMES Conference

Colored HOMFLY of Pretzel Knots

Knots

Definition (Knot)

A **knot** is an embedding from a circle to \mathbb{R}^3 up to any continuous transformation, most simply defined.

→ < Ξ →</p>

Knots

Definition (Knot)

A **knot** is an embedding from a circle to \mathbb{R}^3 up to any continuous transformation, most simply defined.

(a) Closure of a Braid

Knots

Definition (Knot)

A **knot** is an embedding from a circle to \mathbb{R}^3 up to any continuous transformation, most simply defined.

(a) Closure of a Braid

(b) One Branch of a Double-Fat Diagram

Figure: Different knot presentations

William Qin

Colored HOMFLY of Pretzel Knots

Knot Classification

Definition (Pretzel Knots)

A **pretzel knot** is a knot of the form shown. The parameters used here are the numbers of twists in the ellipses. We can have many ellipses.

Figure: An illustration of a genus g pretzel knot

Reidemeister Moves

Proposition (Reidemeister Moves)

If and only if a sequence of Reidemeister moves can transform one knot or link to another, they are equivalent. The three Reidemeister moves are illustrated below.

Figure: The Reidemeister Moves

Knot Invariants

Definition (Knot Invariant)

A **knot invariant** is a quantity that doesn't change after the application of a Reidemeister move. It is therefore independent of projection.

Knot Invariants

Definition (Knot Invariant)

A **knot invariant** is a quantity that doesn't change after the application of a Reidemeister move. It is therefore independent of projection.

Definition (Knot Polynomial)

A knot polynomial is a type of knot invariant that is expressed as a polynomial.

.

Computing knot polynomials using skein relations

Definition (Skein relation)

A **skein relation** is a relationship between different kinds of intersection. With it, a knot polynomial can be computed recursively.

Figure: Skein relation computation

HOMFLY Polynomial

Definition (HOMFLY Polynomial)

The **HOMFLY polynomials** are knot polynomials defined by the skein relation $\frac{1}{A}\mathcal{H}(L_+) - A\mathcal{H}(L_-) = (q - q^{-1})\mathcal{H}(L_0)$, and $\mathcal{H}(unknot) = 1$.

Figure: The Crossing Types

・ 何 ト ・ ヨ ト ・ ヨ ト

Representations

• By "representation", we mean representations of SU(N).

< A > < E

Representations

- By "representation", we mean representations of SU(N).
- There is a bijection between these and Young diagrams.

Representations

- By "representation", we mean representations of SU(N).
- There is a bijection between these and Young diagrams.
- Symmetric representations are [r], Anti-symmetric representations are [1,1,1,1,1,...], fundamental representation is [1].

Figure: The Young diagram [4,4,3,1]

S and T matrices

Proposition (Conformal Field Theory Method)

Racah matrices come in two types: S and T. The T matrices are the crossing matrices, and S matrices bring strands closer or further from each other. Both types come in 4 forms.

Figure: An example double bridge knot

		<u> </u>
1/1/1	liam	()up
	nann	WIII

Colored HOMFLY of Pretzel Knots

Differential Expansion

Definition (Defect)

The **defect** of a knot is an important intrinsic property computable as half the degree of q^2 in the Alexander polynomial, minus 1.

Differential Expansion

Definition (Defect)

The **defect** of a knot is an important intrinsic property computable as half the degree of q^2 in the Alexander polynomial, minus 1.

Definition (Differential Expansion)

The **differential expansion** is an expression of HOMFLY polynomials as the sum of some "quantum numbers" $\{x\} = x - x^{-1}$ and $[x] = \frac{\{q^x\}}{\{q\}}$ and some polynomial "F-factors", allowing recursive expression of HOMFLY.

Differential Expansion

Definition (Defect)

The **defect** of a knot is an important intrinsic property computable as half the degree of q^2 in the Alexander polynomial, minus 1.

Definition (Differential Expansion)

The **differential expansion** is an expression of HOMFLY polynomials as the sum of some "quantum numbers" $\{x\} = x - x^{-1}$ and $[x] = \frac{\{q^x\}}{\{q\}}$ and some polynomial "F-factors", allowing recursive expression of HOMFLY.

Conjecture (Form Of Differential Expansion)

The HOMFLY polynomial of any defect-zero knot in a representation [r] can be expressed as

$$\sum_{k=0}^{r} \frac{[r]!}{[k]![r-k]!} F_{[r]}(A,q) \prod_{i=0}^{k-1} \{Aq^{1-i}\} \{Aq^{-r-i}\}.$$

Definition (*n*th differences)

The n^{th} difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^n(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n - 1^{st}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Definition (*n*th differences)

The n^{th} difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^n(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n - 1^{st}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Definition (*n*th differences)

The n^{th} difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^n(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n - 1^{st}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Definition (*n*th differences)

The n^{th} difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^n(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n - 1^{st}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Figure: Difference Computations $(\square) (\square) ($

Definition (*n*th differences)

The n^{th} difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^n(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n - 1^{st}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Figure: Difference Computations $(\square) (\square) ($

Definition (*n*th differences)

The n^{th} difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^n(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n - 1^{st}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Conjecture

$$Q^{r}(c,r) \approx Q^{r}(c+2,r)$$
 up to $A^{r}q^{2(r)(r-1)}$

Conjecture

$$Q^{r}(c,r) pprox Q^{r}(c+2,r)$$
 up to $A^{r}q^{2(r)(r-1)}$

Conjecture

 $Q^r(c,r) pprox Q^r(c+2,r)$ up to $A^r q^{2(r)(r-1)}$

Conjecture

$$Q^r(c,r) pprox Q^r(c+2,r)$$
 up to $A^r q^{2(r)(r-1)}$

Conjecture

 $Q^r(c,r) pprox Q^r(c+2,r)$ up to $A^r q^{2(r)(r-1)}$

Conjecture

$$Q^{r}(c,r) pprox Q^{r}(c+2,r)$$
 up to $A^{r}q^{2(r)(r-1)}$

Figure: Difference Computations

æ

< 回 > < 三 > < 三 >

- This allows us to speed up HOMFLY calculations!
- 2 It is also true (this is a small lemma) that $H(a, b, c, r) = H(a, c, b, r) = \cdots = H(c, b, a, r).$

Figure: Recursive Computation of HOMFLY

- This allows us to speed up HOMFLY calculations!
- 2 It is also true (this is a small lemma) that $H(a, b, c, r) = H(a, c, b, r) = \cdots = H(c, b, a, r).$

- This allows us to speed up HOMFLY calculations!
- 2 It is also true (this is a small lemma) that $H(a, b, c, r) = H(a, c, b, r) = \cdots = H(c, b, a, r).$

- This allows us to speed up HOMFLY calculations!
- 2 It is also true (this is a small lemma) that $H(a, b, c, r) = H(a, c, b, r) = \cdots = H(c, b, a, r).$

- This allows us to speed up HOMFLY calculations!
- 2 It is also true (this is a small lemma) that $H(a, b, c, r) = H(a, c, b, r) = \cdots = H(c, b, a, r).$

- This allows us to speed up HOMFLY calculations!
- 2 It is also true (this is a small lemma) that $H(a, b, c, r) = H(a, c, b, r) = \cdots = H(c, b, a, r).$

- This allows us to speed up HOMFLY calculations!
- 2 It is also true (this is a small lemma) that $H(a, b, c, r) = H(a, c, b, r) = \cdots = H(c, b, a, r).$

- This allows us to speed up HOMFLY calculations!
- 2 It is also true (this is a small lemma) that $H(a, b, c, r) = H(a, c, b, r) = \cdots = H(c, b, a, r).$

- This allows us to speed up HOMFLY calculations!
- 2 It is also true (this is a small lemma) that $H(a, b, c, r) = H(a, c, b, r) = \cdots = H(c, b, a, r).$

Theorem

For any representation [r], $(A-q)(A+q)(Aq-1)(Aq+1) \mid Q^{1}(m,r), \forall a, b, m.$

< (日) × < 三 × <

Theorem

For any representation [r], $(A-q)(A+q)(Aq-1)(Aq+1) \mid Q^1(m,r), \forall a, b, m.$

•
$$P(a, b, c, r) = Q^0(c, r) =$$

 $\chi_{[1,0]} \sum_{x=1}^{r+1} \frac{1}{S_{1,x}} (\overline{S} \cdot \overline{T}^a \cdot S)_{1,x} (\overline{S} \cdot \overline{T}^b \cdot S)_{1,x} (\overline{S} \cdot \overline{T}^c \cdot S)_{1,x}.$

< (日) × < 三 × <

Theorem

For any representation [r], $(A-q)(A+q)(Aq-1)(Aq+1) \mid Q^{1}(m,r), \forall a, b, m.$

P(a, b, c, r) = Q⁰(c, r) =

$$\chi_{[1,0]} \sum_{x=1}^{r+1} \frac{1}{S_{1,x}} (\overline{S} \cdot \overline{T}^{a} \cdot S)_{1,x} (\overline{S} \cdot \overline{T}^{b} \cdot S)_{1,x} (\overline{S} \cdot \overline{T}^{c} \cdot S)_{1,x}.$$
 S =
 $\left(\sqrt{\frac{(A-q)(A+q)}{(A^{2}-1)(q^{2}+1)}} \sqrt{\frac{(Aq-1)(Aq+1)}{(A^{2}-1)(q^{2}+1)}} \sqrt{\frac{(A-q)(A+q)}{(A^{2}-1)(q^{2}+1)}} \right).$

< (日) × < 三 × <

Theorem

For any representation [r], $(A-q)(A+q)(Aq-1)(Aq+1) \mid Q^{1}(m,r), \forall a, b, m.$

$$P(a, b, c, r) = Q^{0}(c, r) = \chi_{[1,0]} \sum_{x=1}^{r+1} \frac{1}{S_{1,x}} (\overline{S} \cdot \overline{T}^{a} \cdot S)_{1,x} (\overline{S} \cdot \overline{T}^{b} \cdot S)_{1,x} (\overline{S} \cdot \overline{T}^{c} \cdot S)_{1,x}.$$

$$S = \left(\sqrt{\frac{(A-q)(A+q)}{(A^{2}-1)(q^{2}+1)}} \sqrt{\frac{(Aq-1)(Aq+1)}{(A^{2}-1)(q^{2}+1)}} \sqrt{\frac{(A-q)(A+q)}{(A^{2}-1)(q^{2}+1)}} \right).$$

$$\overline{S} = \left(\frac{\frac{A(q^{2}-1)}{(A^{2}-1)(q^{2}+1)}}{\frac{A(q^{2}-1)\sqrt{\frac{(A-q)(A+q)(Aq-1)(Aq+1)}{A^{2}(q^{2}-1)^{2}}}}{(A^{2}-1)(q^{2}+1)}} \frac{\frac{A(q^{2}-1)\sqrt{\frac{(A-q)(A+q)(Aq-1)(Aq+1)}{A^{2}(q^{2}-1)^{2}}}}{(A^{2}-1)q}}{(A^{2}-1)q} \right)$$

< (日) × < 三 × <

.

Theorem

For any representation [r], $(A-q)(A+q)(Aq-1)(Aq+1) \mid Q^{1}(m,r), \forall a, b, m.$

At A = q, we can plug in to each equation and find that the first row of S is 0,1 and of S and T is 1,0.

Theorem

For any representation [r], $(A-q)(A+q)(Aq-1)(Aq+1) \mid Q^{1}(m,r), \forall a, b, m.$

- At A = q, we can plug in to each equation and find that the first row of S is 0,1 and of S and T is 1,0.
- 2 Plugging into the equation of the first slide, we get that $Q^0(c, r)$ is 1!

Theorem

For any representation [r], $(A-q)(A+q)(Aq-1)(Aq+1) \mid Q^{1}(m,r), \forall a, b, m.$

- At A = q, we can plug in to each equation and find that the first row of S is 0,1 and of S and T is 1,0.
- 2 Plugging into the equation of the first slide, we get that $Q^0(c, r)$ is 1!
- Then, taking the difference, we get 0, meaning that A q is a factor.

Theorem

For any representation [r], $(A-q)(A+q)(Aq-1)(Aq+1) \mid Q^{1}(m,r), \forall a, b, m.$

- At A = q, we can plug in to each equation and find that the first row of S is 0,1 and of S and T is 1,0.
- 2 Plugging into the equation of the first slide, we get that $Q^0(c, r)$ is 1!
- Then, taking the difference, we get 0, meaning that A q is a factor.
- This works for A = -q, $A = \frac{1}{q}$, and $A = -\frac{1}{q}$ as well.

Acknowledgements

- 9 Yakov Kononov, for mentoring me and proposing the problem
- In MIT PRIMES, for both this research opportunity and helping facilitate the research
- My parents

References

- Symmetrically colored superpolynomials for all pretzel knots and links. *To appear.*
- A Mironov, A Morozov, An Morozov, P Ramadevi, and Vivek Kumar Singh.

Colored homfly polynomials of knots presented as double fat diagrams.

Journal of High Energy Physics, 2015(7):109, 2015.

D Bar-Natan.

http://www.katlas.org.