Colored HOMFLY Polynomials of Genus-2 Pretzel Knots

William Qin
mentor: Yakov Kononov
Millburn High School

October 18, 2020
MIT PRIMES Conference

Knots

Definition (Knot)

A knot is an embedding from a circle to \mathbb{R}^{3} up to any continuous transformation, most simply defined.

Knots

Definition (Knot)

A knot is an embedding from a circle to \mathbb{R}^{3} up to any continuous transformation, most simply defined.

(a) Closure of a Braid

Knots

Definition (Knot)

A knot is an embedding from a circle to \mathbb{R}^{3} up to any continuous transformation, most simply defined.

(a) Closure of a Braid
(b) One Branch of a Double-Fat Diagram

Figure: Different knot presentations

Knot Classification

Definition (Pretzel Knots)

A pretzel knot is a knot of the form shown. The parameters used here are the numbers of twists in the ellipses. We can have many ellipses.

Figure: An illustration of a genus g pretzel knot

Reidemeister Moves

Proposition (Reidemeister Moves)

If and only if a sequence of Reidemeister moves can transform one knot or link to another, they are equivalent. The three Reidemeister moves are illustrated below.

Figure: The Reidemeister Moves

Knot Invariants

Definition (Knot Invariant)

A knot invariant is a quantity that doesn't change after the application of a Reidemeister move. It is therefore independent of projection.

Knot Invariants

Definition (Knot Invariant)

A knot invariant is a quantity that doesn't change after the application of a Reidemeister move. It is therefore independent of projection.

Definition (Knot Polynomial)

A knot polynomial is a type of knot invariant that is expressed as a polynomial.

Computing knot polynomials using skein relations

Definition (Skein relation)

A skein relation is a relationship between different kinds of intersection. With it, a knot polynomial can be computed recursively.

Figure: Skein relation computation

HOMFLY Polynomial

Definition (HOMFLY Polynomial)

The HOMFLY polynomials are knot polynomials defined by the skein relation $\frac{1}{A} \mathcal{H}\left(L_{+}\right)-A \mathcal{H}\left(L_{-}\right)=\left(q-q^{-1}\right) \mathcal{H}\left(L_{0}\right)$, and $\mathcal{H}($ unknot $)=1$.

(a) L_{+}
(b) L_{-}
(c) L_{0}

Figure: The Crossing Types

Representations

- By "representation", we mean representations of $S U(N)$.

Representations

- By "representation", we mean representations of $S U(N)$.
- There is a bijection between these and Young diagrams.

Representations

- By "representation", we mean representations of $S U(N)$.
- There is a bijection between these and Young diagrams.
- Symmetric representations are [r], Anti-symmetric representations are $[1,1,1,1,1, \cdots]$, fundamental representation is [1].

Figure: The Young diagram [4,4,3,1]

S and T matrices

Proposition (Conformal Field Theory Method)

Racah matrices come in two types: S and T. The T matrices are the crossing matrices, and S matrices bring strands closer or further from each other. Both types come in 4 forms.

Figure: An example double bridge knot

Differential Expansion

Definition (Defect)

The defect of a knot is an important intrinsic property computable as half the degree of q^{2} in the Alexander polynomial, minus 1.

Differential Expansion

Definition (Defect)

The defect of a knot is an important intrinsic property computable as half the degree of q^{2} in the Alexander polynomial, minus 1.

Definition (Differential Expansion)

The differential expansion is an expression of HOMFLY polynomials as the sum of some "quantum numbers" $\{x\}=x-x^{-1}$ and $[x]=\frac{\left\{q^{\star}\right\}}{\{q\}}$ and some polynomial "F-factors", allowing recursive expression of HOMFLY.

Differential Expansion

Definition (Defect)

The defect of a knot is an important intrinsic property computable as half the degree of q^{2} in the Alexander polynomial, minus 1.

Definition (Differential Expansion)

The differential expansion is an expression of HOMFLY polynomials as the sum of some "quantum numbers" $\{x\}=x-x^{-1}$ and $[x]=\frac{\left\{q^{x}\right\}}{\{q\}}$ and some polynomial "F-factors", allowing recursive expression of HOMFLY.

Conjecture (Form Of Differential Expansion)

The HOMFLY polynomial of any defect-zero knot in a representation [r] can be expressed as

$$
\sum_{k=0}^{r} \frac{[r]!}{[k]![r-k]!} F_{[r]}(A, q) \prod_{i=0}^{k-1}\left\{A q^{1-i}\right\}\left\{A q^{-r-i}\right\}
$$

Differences

Definition ($n^{\text {th }}$ differences)

The $n^{\text {th }}$ difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^{n}(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n-1^{\text {st }}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Figure: Difference Computations

Differences

Definition ($n^{\text {th }}$ differences)

The $n^{\text {th }}$ difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^{n}(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n-1^{\text {st }}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Figure: Difference Computations

Differences

Definition ($n^{\text {th }}$ differences)

The $n^{\text {th }}$ difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^{n}(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n-1^{\text {st }}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Figure: Difference Computations

Differences

Definition ($n^{\text {th }}$ differences)

The $n^{\text {th }}$ difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^{n}(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n-1^{\text {st }}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Figure: Difference Computations

Differences

Definition ($n^{\text {th }}$ differences)

The $n^{\text {th }}$ difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^{n}(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n-1^{\text {st }}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Figure: Difference Computations

Differences

Definition ($n^{\text {th }}$ differences)

The $n^{\text {th }}$ difference of a genus 2 pretzel knot with fixed a, b, denoted $Q^{n}(c, r)$, is equal to the difference of (the largest polynomial factors) of the $n-1^{\text {st }}$ differences. In particular, if the largest polynomial factor is not taken, the monomial factors are cleared.

Figure: Difference Computations

Main Conjecture

Conjecture

$Q^{r}(c, r) \approx Q^{r}(c+2, r)$ up to $A^{r} q^{2(r)(r-1)}$

Figure: Difference Computations

Main Conjecture

Conjecture

$Q^{r}(c, r) \approx Q^{r}(c+2, r)$ up to $A^{r} q^{2(r)(r-1)}$

Figure: Difference Computations

Main Conjecture

Conjecture

$Q^{r}(c, r) \approx Q^{r}(c+2, r)$ up to $A^{r} q^{2(r)(r-1)}$

Figure: Difference Computations

Main Conjecture

Conjecture

$Q^{r}(c, r) \approx Q^{r}(c+2, r)$ up to $A^{r} q^{2(r)(r-1)}$

Figure: Difference Computations

Main Conjecture

Conjecture

$Q^{r}(c, r) \approx Q^{r}(c+2, r)$ up to $A^{r} q^{2(r)(r-1)}$

Figure: Difference Computations

Main Conjecture

Conjecture

$Q^{r}(c, r) \approx Q^{r}(c+2, r)$ up to $A^{r} q^{2(r)(r-1)}$

Figure: Difference Computations

Implications

(1) This allows us to speed up HOMFLY calculations!
(2) It is also true (this is a small lemma) that

$$
H(a, b, c, r)=H(a, c, b, r)=\cdots=H(c, b, a, r) .
$$

Figure: Recursive Computation of HOMFLY

Implications

(1) This allows us to speed up HOMFLY calculations!
(2) It is also true (this is a small lemma) that

$$
H(a, b, c, r)=H(a, c, b, r)=\cdots=H(c, b, a, r) .
$$

Figure: Recursive Computation of HOMFLY

Implications

(1) This allows us to speed up HOMFLY calculations!
(2) It is also true (this is a small lemma) that

$$
H(a, b, c, r)=H(a, c, b, r)=\cdots=H(c, b, a, r) .
$$

Figure: Recursive Computation of HOMFLY

Implications

(1) This allows us to speed up HOMFLY calculations!
(2) It is also true (this is a small lemma) that $H(a, b, c, r)=H(a, c, b, r)=\cdots=H(c, b, a, r)$.

Figure: Recursive Computation of HOMFLY

Implications

(1) This allows us to speed up HOMFLY calculations!
(2) It is also true (this is a small lemma) that

$$
H(a, b, c, r)=H(a, c, b, r)=\cdots=H(c, b, a, r) .
$$

Figure: Recursive Computation of HOMFLY

Implications

(1) This allows us to speed up HOMFLY calculations!
(2) It is also true (this is a small lemma) that

$$
H(a, b, c, r)=H(a, c, b, r)=\cdots=H(c, b, a, r) .
$$

Figure: Recursive Computation of HOMFLY

Implications

(1) This allows us to speed up HOMFLY calculations!
(2) It is also true (this is a small lemma) that $H(a, b, c, r)=H(a, c, b, r)=\cdots=H(c, b, a, r)$.

Figure: Recursive Computation of HOMFLY

Implications

(1) This allows us to speed up HOMFLY calculations!
(2) It is also true (this is a small lemma) that $H(a, b, c, r)=H(a, c, b, r)=\cdots=H(c, b, a, r)$.

Figure: Recursive Computation of HOMFLY

Implications

(1) This allows us to speed up HOMFLY calculations!
(2) It is also true (this is a small lemma) that
$H(a, b, c, r)=H(a, c, b, r)=\cdots=H(c, b, a, r)$.

Figure: Recursive Computation of HOMFLY

Other differences

Theorem
For any representation $[r]$, $(A-q)(A+q)(A q-1)(A q+1) \mid Q^{1}(m, r), \forall a, b, m$.

Other differences

Theorem
For any representation $[r]$, $(A-q)(A+q)(A q-1)(A q+1) \mid Q^{1}(m, r), \forall a, b, m$.
(1) $P(a, b, c, r)=Q^{0}(c, r)=$

$$
\chi_{[1,0]} \sum_{x=1}^{r+1} \frac{1}{S_{1, x}}\left(\bar{S} \cdot \bar{T}^{a} \cdot S\right)_{1, x}\left(\bar{S} \cdot \bar{T}^{b} \cdot S\right)_{1, x}\left(\bar{S} \cdot \bar{T}^{c} \cdot S\right)_{1, x}
$$

Other differences

Theorem

For any representation $[r]$, $(A-q)(A+q)(A q-1)(A q+1) \mid Q^{1}(m, r), \forall a, b, m$.
(1) $P(a, b, c, r)=Q^{0}(c, r)=$

$$
\chi_{[1,0]} \sum_{x=1}^{r+1} \frac{1}{S_{1, x}}\left(\bar{S} \cdot \bar{T}^{a} \cdot S\right)_{1, x}\left(\bar{S} \cdot \bar{T}^{b} \cdot S\right)_{1, x}\left(\bar{S} \cdot \bar{T}^{c} \cdot S\right)_{1, x} .
$$

(2) $S=\left(\begin{array}{ll}\sqrt{\frac{(A-q)(A+q)}{\left(A^{2}-1\right)\left(q^{2}+1\right)}} & \sqrt{\frac{(A q-1)(A q+1)}{\left(A^{2}-1\right)\left(q^{2}+1\right)}} \\ \sqrt{\frac{(A q-1)(A q+1)}{\left(A^{2}-1\right)\left(q^{2}+1\right)}} & \sqrt{\frac{(A-q)(A+q)}{\left(A^{2}-1\right)\left(q^{2}+1\right)}}\end{array}\right)$.

Other differences

Theorem

For any representation $[r]$, $(A-q)(A+q)(A q-1)(A q+1) \mid Q^{1}(m, r), \forall a, b, m$.
(1) $P(a, b, c, r)=Q^{0}(c, r)=$

$$
\chi_{[1,0]} \sum_{x=1}^{r+1} \frac{1}{S_{1, x}}\left(\bar{S} \cdot \bar{T}^{a} \cdot S\right)_{1, x}\left(\bar{S} \cdot \bar{T}^{b} \cdot S\right)_{1, x}\left(\bar{S} \cdot \bar{T}^{c} \cdot S\right)_{1, x} .
$$

(2) $S=\left(\begin{array}{ll}\sqrt{\frac{(A-q)(A+q)}{\left(A^{2}-1\right)\left(q^{2}+1\right)}} & \sqrt{\frac{(A q-1)(A q+1)}{\left(A^{2}-1\right)\left(q^{2}+1\right)}} \\ \sqrt{\frac{(A q-1)(A q+1)}{\left(A^{2}-1\right)\left(q^{2}+1\right)}} & \sqrt{\frac{(A-q)(A+q)}{\left(A^{2}-1\right)\left(q^{2}+1\right)}}\end{array}\right)$.
(3) $\bar{S}=\left(\begin{array}{c}\frac{A\left(q^{2}-1\right)}{\left(A^{2}-1\right) q} \\ \frac{A\left(q^{2}-1\right) \sqrt{\frac{(A-q)(A+q)(A q-1)(A q+1)}{A^{2}\left(q^{2}-1\right)^{2}}}}{\left(A^{2}-1\right) q}\end{array}\right.$

$$
\begin{gathered}
\frac{A\left(q^{2}-1\right)}{\sqrt{\frac{(A-q)(A+q)(A q-1)(A q+1)}{A^{2}\left(q^{2}-1\right)^{2}}}} \\
\left(A^{2}-1\right) q \\
\frac{A\left(q^{2}-1\right)}{\left(A^{2}-1\right) q}
\end{gathered} .
$$

Other differences

Theorem
For any representation $[r]$, $(A-q)(A+q)(A q-1)(A q+1) \mid Q^{1}(m, r), \forall a, b, m$.
(1) At $A=q$, we can plug in to each equation and find that the first row of S is 0,1 and of \bar{S} and \bar{T} is 1,0 .

Other differences

Theorem
For any representation $[r]$, $(A-q)(A+q)(A q-1)(A q+1) \mid Q^{1}(m, r), \forall a, b, m$.
(1) At $A=q$, we can plug in to each equation and find that the first row of S is 0,1 and of \bar{S} and \bar{T} is 1,0 .
(2) Plugging into the equation of the first slide, we get that $Q^{0}(c, r)$ is 1 !

Other differences

Theorem

For any representation $[r]$, $(A-q)(A+q)(A q-1)(A q+1) \mid Q^{1}(m, r), \forall a, b, m$.
(1) At $A=q$, we can plug in to each equation and find that the first row of S is 0,1 and of \bar{S} and \bar{T} is 1,0 .
(2) Plugging into the equation of the first slide, we get that $Q^{0}(c, r)$ is 1 !
(3) Then, taking the difference, we get 0 , meaning that $A-q$ is a factor.

Other differences

Theorem

For any representation $[r]$, $(A-q)(A+q)(A q-1)(A q+1) \mid Q^{1}(m, r), \forall a, b, m$.
(1) At $A=q$, we can plug in to each equation and find that the first row of S is 0,1 and of \bar{S} and \bar{T} is 1,0 .
(2) Plugging into the equation of the first slide, we get that $Q^{0}(c, r)$ is 1 !
(3) Then, taking the difference, we get 0 , meaning that $A-q$ is a factor.
(9) This works for $A=-q, A=\frac{1}{q}$, and $A=-\frac{1}{q}$ as well.

Acknowledgements

(1) Yakov Kononov, for mentoring me and proposing the problem
(2) MIT PRIMES, for both this research opportunity and helping facilitate the research
(3) My parents

References

Symmetrically colored superpolynomials for all pretzel knots and links. To appear.
A Mironov, A Morozov, An Morozov, P Ramadevi, and Vivek Kumar Singh.
Colored homfly polynomials of knots presented as double fat diagrams.
Journal of High Energy Physics, 2015(7):109, 2015.
D Bar-Natan.
http://www.katlas.org.

